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ABSTRACT 

This paper presents an overview of the current state in research directions in the rainbow 

Ramsey theory. We list results, problems, and conjectures related to the existence of rainbow 

arithmetic progressions in [n] and N. A general perspective on other rainbow Ramsey type 

problems is given. 

 

INTRODUCTION 

Ramsey theory can be described as the 

study of unavoidable regularity in large 

structures. In the words of T. Motzkin, 

“complete disorder is impossible” [16]. In 

[22], we started a new trend, which can 

be categorized as rainbow Ramsey 

theory. We are interested in the existence 

of rainbow/hetero-chromatic structures in 

a colored universe, under certain density 

conditions on the coloring. The general 

goal is to show that complete disorder is 

unavoidable as well.Previous work 

regarding the existence off rainbow 

structures in a colored universe has been 

done in the context of canonical Ramsey 

theory (see [11, 10, 9, 33, 31, 25, 27, 26, 

35] and references therein). However, the 

canonical theorems prove the existence of 

either a monochromatic structure or a 

rainbow structure. The results obtained in 

[22, 23, 5, 14] are not “either-or”–type 

statements and, thus, are the first results in 

the literature guaranteeing solely the 

existence of rainbow structures in colored 

sets of integers. In a sense, the 

conjectures and theorems we describe 

below can be thought of as the first 

rainbow counterparts of classical  
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theorems in Ramsey theory, such as van 

der Waerden’s, Rado’s and Szemer´edi’s 

theorems [44, 43, 17, 24]. It is curious to 

note that rainbow Ramsey problems have 

received great attention in the context of 

graph theory (see [12, 8, 2, 4, 36, 13, 6, 

29, 20, 3, 28, 21] and references therein). 

Ramsey's theorem states that if there are 

enough vertices, then at least one thing 

(e.g., red or blue triangle) is guaranteed to 

exist. The Ramsey number R(k,l) is 

defined as the smallest integer n such that 

in any two-coloring of the edges of Kn by 

red and blue, either there is a red Kk or a 

blue Kl. 

We investigate a new generalization of 

the generalized ramsey number for 

graphs. Recall that the generalized 

ramsey number for graphs G1,G2,….., 

Gc is the minimum positive integer N 

such that any coloring of the edges of the 

complete graph K n with c colors must 

contain a subgraph isomorphic to G, in 

color i for some i. Bialostocki and 

Voxman defined RM (G ) for a graph G 

to be the minimum N such that any edge-

coloring of K n with any number of 

colors must contain a subgraph 

isomorphic to G in which either every 

edge is the same color (a monochromatic 

G) or every edge is a different color (a 

rainbow G). This number exists if and 

only if G is acyclic. 

There are some other surveys of edge 

coloring that we should mention. The first 

is the dynamic survey [199] by 

Radziszowski which contains a 

wonderful list of known (monochromatic) 

Ramsey numbers. There is a brief survey 

of anti-Ramsey results in [207]. Also 

there is a survey by Kano and Li [140] 

which discusses some rainbow coloring. 

There is also a forthcoming survey by 

Fujita, Liu and Magnant [85] related to 

this survey but focusing more on large 

monochromatic structures. It should be 

noted that in [216], Voloshin 

demonstrates very interesting 

relationships between rainbow / 

monochromatic subgraphs and mixed 

hypergraph colorings. In fact, many of 

the notions of generalized Ramsey 

colorings are very closely related to upper 

and lower chromatic numbers of the 

derived mixed hypergraph. 

All graphs considered in this paper are 

undirected and simple. Cm,Pm,Km and 

Sm stand for cycle, path, complete, and 

star graphs on m vertices, respectively. 

The graph Ki + Pn is obtained by adding 

an additional vertex to the path Pn and 

connecting this new vertex to each vertex 

of Pn. The number of edges in a graph G 

is denoted by ¿(G). Further, the minimum 

degree of a graph G is denoted by 6(G). 

An independent set of vertices of a graph 

G is a subset of the vertex set V(G) in 
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which no two vertices are adjacent. The 

independence number of a graph G, a(G), 

is the size of the largest independent set. 

The neighborhood of the vertex u is the 

set of all vertices of G that are adjacent to 

u, denoted by N(u). N[u] denote to N(u) 

U{u}. For vertex-disjoint subgraphs H1 

and H2 of G we let E(H1 ,H2) = {xy e 

E(G) : x e V(H1),y e V(H2)}. Let H be a 

subgraph of the graph G and U Q V(G), 

NH(U) is defined as (UueU N(u)) n 

V(H). Suppose that V1 Q V(G) and V1 is 

nonempty, the subgraph of G whose 

vertex set is V1 and whose edge set is the 

set of those edges of G that have both 

ends in V1 is called the subgraph of G 

induced by V1, denoted by (V1 )G. 

he cycle-complete graph Ramsey number 

r(Cm,Kn) is the smallest integer N such that 

for every graph G of order N, G contains 

Cm or a(G) > n. The graph (n - 1)Km-1 

shows that r(Cm,Kn) > (m - 1)(n - 1) + 1. In 

one of the earliest contributions to graphical 

Ramsey theory, Bondy and Erdos [1] 

proved the following result: for all m > n2 - 

2, r(Cm,Kn) = (m - 1)(n - 1) + 1. The above 

restriction was improved by Nikiforov [2] 

when he proved the equality for m > 4n + 2. 

Erdos et al. [3] gave the following 

conjecture. 

Conjecture 1. r(Cm,K„) = (m - 1)(„ - 1) + 1, 

for all m > n > 3 except r (C3,K3) = 6. 

The conjecture was confirmed by Faudree 

and Schepl [4] and Rosta [5] for „ = 3 in 

early work on Ramsey theory. Yang et al. 

[6] and Bollobas et al. [7] proved the 

conjecture for „ = 4 and „ = 5, 

respectively. The conjecture was proved 

by Schiermeyer [8] for „ = 6. Jaradat and 

Baniabedalruhman [9,10] proved the 

conjecture for „ = 7 and m = 7,8. Later 

on, Chena et. al. [11] proved the 

conjecture for „ = 7. Recently, Jaradat 

and Al-Zaleq [12] and Y. Zhang and K. 

Zhang [13], independently, proved the 

conjecture in the case „ = m = 8. In a 

related work, Radziszowski and Tse [14] 

showed that r(C4,K7) = 22 and r(C4,K8) 

= 26. In [15] Jayawardene and Rousseau 

proved that r(C5,K6) = 21. Also, 

Schiermeyer [16] proved that r (C5, K7) 

= 25. For more results regarding the 

Ramsey numbers, see the dynamic survey 

[17] by Radziszowski. 

 

Rainbow arithmetic progressions in [n] 

and N 

In 1916, Schur [39] proved that for every 

k, if n is sufficiently large, then every k-

coloring of [n] := {1,...,n} contains a 

monochromatic solution of the equation x 

+ y = z. More than seven decades later, 

Alekseev and Savchev [1] considered what 

Bill Sands calls an un-Schur problem [18]. 

They proved that for every equinumerous 

3-coloring of [3n] (i.e., a coloring in 

which different color classes have the 

same cardinality), the equation x+y = z 

has a solution with x, y and z belonging 

to different color classes. Such solutions 

will be called rainbow solutions. E. and 

G. Szekeres asked whether the condition 

of equal cardinalities for three color classes 

can be weakened [42]. Indeed, Sch¨onheim 

[38] proved that for every 3-coloring of [n], 
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such that every color class has cardinality 

greater than n/4, the equation x + y = z 

has rainbow solutions. Moreover, he 

showed that n/4 is optimal. 

Inspired by the problem above, the third 

author posed the following conjecture at 

the open problem session of the 2001 MIT 

Combinatorics Seminar [22], which was 

subsequently proved by the authors in 

[23]. 

Theorem 1 (Conjectured in [22], proved 

in [23].) For every equinumerous 3-

coloring of [3n], there exists a rainbow 

AP(3), that is, a solution to the equation x 

+ y = 2z in which x, y, and z are colored 

with three different colors. 

In [22], Fox 1, Mahdian, and the authors 

proved the following infinite version of 

Theorem 1. 

Theorem 2 [22] Let c : N → {R, G, B} 

be a 3-coloring of the set of natural 

numbers with colors Red, Green, and 

Blue, satisfying the following density 

condition 

lim sup n→∞ (min(Rc(n), Gc(n), 

Bc(n)) − n/6) = +∞ 

where Rc(n) is the number of 

integers less than or equal to n that are 

colored red, and Gc(n) and Bc(n) are 

defined similarly. Then c contains a 

rainbow AP(3). 

Basically Theorem 2 states that 

every 3-coloring of the set of natural 

numbers with the upper density of each 

color greater than 1/6 admits a rainbow 

AP(3). 

Based on the computer evidence 

and the intuitive belief that the finite 

version of Theorem 2 should be true as 

well, in [22], we posed as a conjecture the 

following stronger form of Theorem 1, 

which has been recently confirmed by 

Axenovich and Fon-Der-Flaass [5]. 

Theorem 3 (Conjectured in [22], 

proved in [5].) For every n ≥ 3, every 

partition of [n] into three color classes R, 

G, and B with min(|R|, 

|G|, |B|) > r(n), where 

 

contains a rainbow AP(3). The following 

coloring of N: 

 

contains no rainbow AP(3) and 

min(Rc(n), Gc(n), Bc(n)) = (n + 2)/6, 

hence showing that Theorem 2 is the best 

possible. Clearly, for n ≡ 2 (mod 6), this 

coloring shows that Theorem 3 is tight as 

well. As for the remaining case (when n = 

6k + 2 for an integer k), we define a 

coloring c as follows: 
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Since every blue number is at most 2k + 

1, and every green number is at least 4k + 

2, a blue and a green number cannot be 

the first and the second, or the second and 

the third terms of an arithmetic 

progression with all terms in [n]. Also, 

since blue numbers are odd and green 

numbers are even, a blue and a green 

cannot be the first and the third terms of 

an arithmetic progression. Therefore, c 

does not contain any rainbow AP(3). It is 

not difficult to see that c contains no 

rainbow AP(3) and min(Rc(n), Gc(n), 

Bc(n)) = k +1=(n + 4)/6. The existing 

proofs of Theorems 1, 2, and 3 use a 

fact that every rainbow-free 

coloring contains a dominant color, that is, 

a color x such that for every two 

consecutive numbers that are colored 

with different colors, one of them is 

colored with x. The rest is to show that 

under certain density conditions the 

dominant color is not excessively 

dominant, so a rainbow AP(3) exists. 

One way to generalize Theorems 1 and 3 

is to increase the number of colors and 

the length of a rainbow AP. 

Axenovich and Fon-Der-Flaass came up 

with a construction for k ≥ 5, that no 

matter how large the smallest color class 

is, there is a k-coloring with no rainbow 

AP(k). Their construction is as follows 

[5]. 

Let n = 2mk, k ≥ 5. We subdivide [n] into 

k consecutive intervals of length 2m 

each, say A1,...,Ak and let t = k/2. Then, 

 

It is easy to see that the above coloring 

does not contain any rainbow AP(k) and 

the size of each color class is n/k. For 

example, the coloring c in the case n = 60, 

k = 5, m = 6, t = 2, is as follows. 

0000000000003131313131312222222222

22313131313131444444444444 

However, the case k = 4 is still unresolved. 

In this paper we confirm the Erdos, 

Faudree, Rousseau, and Schelp conjecture 

in the case C9 and K8. In fact, we prove 

that r(C9,K8) = 57. It is known, by taking G 

= („ - 1)Km_i, that r(Cm,K„) > (m - 1)(„ - 

1) + 1. In this section we prove that this 

bound is exact in the case m = 9 and „ = 8. 

Our proof depends on a sequence of 8 

lemmas. 
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Lemma 2.1. Let G be a graph of order > 57 

that contains neither C9 nor an 8-elemant 

independent set. Then 6(G) > 8. 

Proof. Suppose that G contains a vertex of 

degree less than 8, say u. Then |V(G - N[u])| 

> 49. Since r(C9,K7) = 49, as a result G - 

N[u] has independent set consists of 7 

vertices. This set with the vertex u is an 8-

elemant independent set of vertices of G. 

That is a contradiction. □ 

Throughout all Lemmas 2.2 to 2.8, we let G 

be a graph with minimum degree 6(G) > 8 

that contains neither C9 nor an 8-elemant 

independent set. 

Lemma 2.2. If G contains K8, then |V (G)|> 

72. 

Proof. Let U = {u1 ,u2,u3,u4,u5,u6,u7,u8} 

be the vertex set of K8, Let R = G - U and 

Ui = N (ui) n V (R) for each 1 < i < 8. Since 

6(G) > 8, Ui / 0 for all 1 < i < 8. Since there 

is a path of order 8 joining any two vertices 

of U, as a result Ui n Uj = 0 for all 1 < i < j 

< 8 (otherwise, if w e Ui n Uj for some 1 < i 

< j < 8, then the concatenation of the uiuj-

path of order 8 with uiwuj, is a cycle of 

order 9, a contradiction). Similarly, since 

there is a path of order 7 joining any two 

vertices of U, as a result for all 1 < i < j < 8 

and for all x e Ui and y e Uj 

we have that xy / E(G) (otherwise, if there 

are 1 < i < j < 8 such that x e Ui, y e Uj and 

xy e E(G), then the concatenation of the 

uiuj-path of order 7 with uixyuj, is a cycle 

of order 9, a contradiction). Also, since 

there is a path of order 6 joining any two 

vertices of U, as a result, NR(Ui) n NR(Uj) 

= 0, 1 < i < j < 8 (otherwise, if there are 1 < 

i < j < 8 such that w e NR(Ui) n NR(Uj), 

then the concatenation of the uiuj-path of 

order 6 with uixwyuj, is a cycle of order 9 

where x e Ui, y e Uj and xw,wy e E(G), a 

contradiction). Therefore |Ui U NR(Ui) U 

{ui}| > 6(G) + 1. Thus, |V(G)| > 8(6(G) + 1) 

> (8) (9) = 72.  

If G contains K8 - S6, then G contains K8. 

Proof. Let U = {ui, u2, u3, u4, u5, u6, u7, 

u8} be the vertex set of K8 - S6 where the 

induced subgraph of {u1f u2, u3, u4, u5, u6, 

u7} is isomorphic to K7. Without loss of 

generality we may assume that u1u8,u2u8 e 

E(G). Let R = G - U and Ui = N(ui) n V(R) 

for each 1 < i < 8. Then, as in Lemma 2.2, 

we have the following: 

(1) Ui n Uj = 0 for all 1 < i< j < 8 except 

possibly for i = 1 and j = 2. 

(2) E(Ui, Uj) = 0 for all 1 < i<j < 8. 

(3) NR(Ui) n NR(Uj) = 0 for all 1 < i<j < 8. 

(4) E(Nr(U{),Nr (Uj)) = 0 for all 1 < i<j < 

8. 

Since a(G) < 7, as a result at least five of 

the induced subgraphs (Ui U NR(Ui) )G, 3 

< i < 8 are complete. Since 6(G) > 8, it 

implies that these complete graphs contain 

K8. Hence, G contains K8. 

CONCLUSION 

. The theme of this paper was to efficiently 

force a rainbow copy of a specific graph H 

in every proper coloring of a constructed 

graph G. We have measured efficiency by 
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the number of edges required in G and have 

considered this both in the online and 

offline setting. Let us mention another 

concept of efficiency that might be 

interesting to study: For given graph H what 

is the least maximum degree of a graph G 

with G → H, i.e., where every proper edge-

coloring of G contains a rainbow copy of 

H? Clearly, the maximum degree of G must 

be at least |E(H)|−1 since otherwise G can 

be properly colored with less than |E(H)| 

colors and hence does not contain a rainbow 

copy of H. There is also an online variant of 

this question, which is analogous to the 

online antiRamsey numbers we defined 

here. One can show that Builder can force a 

rainbow matching on k edges even if the 

graph she presents has maximum degree at 

most d(k + 1)/2e and that no rainbow copy 

of any k-edge graph H can be forced by 

Builder if she is restricted to presenting a 

graph of maximum degree strictly less than 

d(k + 1)/2e. 
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