

A REVIEW ON HAMILTONIAN COLORINGS WITH MULTIPLE OBSERVATIONS

Abstract

For vertices u and v in a connected graph G of order n, the length of a longest $u-v$ path in G is denoted by $\mathrm{D}(\mathrm{u}, \mathrm{v})$. A hamiltonian coloring c of G is an assignment c of colors (positive integers) to the vertices of G suchthat $D(u, v)+|c(u)-c(v)| n-1$ for every two distinct vertices u and v of G. The value hc(c) of a hamiltonian coloring c of G is the maximum colorassigned to a vertex of G. The hamiltonian chromatic number $\mathrm{hc}(\mathrm{G})$ of $\operatorname{Gis} \min \{\mathrm{hc}(\mathrm{c})\}$ over all hamiltonian colorings c of G. Hamiltonian chromatic numbers of some special classes of graphs are determined. It is shown that for every two integers k and n with k 1 an d n 3 , there exists a hamiltonian graph of order n with hamiltonian chromatic number k if andonly if $1 \mathrm{kn}-2$. Also, a sharp upper bound for the hamiltonian chromatic number of a connected graph in terms of its order is established. © 2004 Elsevier B.V. All rights reserved.

1. Introduction

For a connected graph G of order n and diameter d and an integer k with 1 kd , a radio k-coloring of G is defined in [1] as an assignment c of colors(positive integers) to the vertices of G such that
$\mathrm{d}(\mathrm{u}, \mathrm{v})+|\mathrm{c}(\mathrm{u})-\mathrm{c}(\mathrm{v})| 1+\mathrm{k}$
for every two distinct vertices u and v of G. The value rck(c) of a radio $k-$ coloring c of G is the maximum color
assigned to a vertex of G; while the radio k-chromatic number $\operatorname{rck}(\mathrm{G})$ of G is $\min \{\operatorname{rck}(\mathrm{c})\}$ over all radio k-colorings c of G. A radio k-coloring c of G is a minimum radio k - coloring if $\operatorname{rck}(\mathrm{c})=\operatorname{rck}(\mathrm{G})$. These concepts were inspired by the so-called channel assignment problem, where channels are assigned to FM radio stations according to the distances between the stations (and some other factors as well)

1. Mrs.D.Santhikumari ${ }^{1}$, Asst.Professor, Rise Krishna Sai Gandhi Goup of Institutions,
 Ongle, A.P., India.

2. Mr.N.V.Sivarao ${ }^{2}$, Asst.Professor, Rise Krishna Sai Prakasam Goup of Institutions, Ongle, A.P., India.

Since $\operatorname{rc} 1(G)$ is the chromatic number (G), radio k-colorings provide a generalization of ordinary colorings of graphs. The radio d-chromatic number was studied in $[1,2]$ and was also called the radio number. Radio d-colorings are also referred to as radio labelings since no two vertices can be colored the same in a radio d-coloring. Thus, in a radio labeling of a connected graph of diameter d, the labels (colors) assigned to adjacent vertices must differ by at least d, the labels assigned to two vertices whose distance is 2 must differ by at least $\mathrm{d}-1$, and so on, up to the vertices whose distance is d, that is, antipodal vertices, whose labels are only required to be different. A radio ($\mathrm{d}-1$)-coloring is less restrictive in that colors assigned to two vertices whose distance is i , where 1id, are only required to differ by at least $d-i$. In particular, antipodal vertices canbe colored the same. For this reason, radio ($\mathrm{d}-1$)colorings are also called radio antipodal colorings or, more simply, antipodal colorings. Antipodal colorings of graphs were studied in $[3,4]$, where $\operatorname{rcd}-1(G)$ was written $\operatorname{asac}(G)$.

Two ofthe major areas in graph theory are colorings and the study oflongest paths and cycles. Within the second area is hamiltonian graph theory, which includes a number of theorems that give sufficient
conditions for graphs to contain hamiltonian cycles or cycles ofsome prescribed length. Another major topic ofstudy in hamiltonian graph theory is hamiltonian-connected graphs (graphs containing a hamiltonian $u-v$ path for every pair u, v ofdistinct vertices). It is the goal ofthis paper to study a connection between these two areas.

Radio k-coloring of paths were studied in [5] for all possible valuesof k. In the case of an antipodal coloring of the path Pn of order n3 (and diameter $n-1$), only the end-vertices of Pn are permitted to be colored the same since the only pair of antipodal vertices in Pn are its two endvertices. Of course, the two end-vertices of Pn are connected by a hamiltonian path. As mentioned earlier, if u and v are any two distinct vertices of Pn and $\mathrm{d}(\mathrm{u}, \mathrm{v})=\mathrm{i}$, then $|c(u)-c(v)| n-1-i$. Since $P n$ is a tree, not only is i the length of a shortest $u-v$ path in Pn , it is, in fact, the length of any $\mathrm{u}-\mathrm{v}$ path in Pn since every two vertices are connected by a unique path. In particular, the length of a longest $u-v$ path in Pn is i as well. For vertices u and v in a connected graph G, let $D(u, v)$ denote the length of a longest $u-v$ path in G. Thus for every connected graph G of order n and diameter d , both $\mathrm{d}(\mathrm{u}, \mathrm{v})$ and $\mathrm{D}(\mathrm{u}, \mathrm{v})$ are metrics on $V(\mathrm{G})$. Radio k-colorings of G are
inspired by radio antipodal colorings c which are defined by the inequality

$$
\begin{aligned}
& \mathrm{d}(\mathrm{u}, \quad \mathrm{v})+\mid \mathrm{c}(\mathrm{u})- \\
& \mathrm{c}(\mathrm{v}) \mid \mathrm{d} .
\end{aligned}
$$

If G is a path, then(1) is equivalent to

$$
\begin{aligned}
& \mathrm{D}(\mathrm{u}, \quad \mathrm{v})+\mid \mathrm{c}(\mathrm{u})- \\
& \mathrm{c}(\mathrm{v}) \mid \mathrm{n}-1,
\end{aligned}
$$

which suggests an extension of the coloring c that satisfies (2) for an arbitrary connected graph G. A hamiltonian coloring c of G is an assignment of colors (positive integers) to the vertices of G such that $D(u$, $v)+|c(u)-c(v)| n-1$ for every two distinct vertices u and v of G. Ina hamiltonian coloring of G, two vertices u and v canbe assigned the samecolor only if G contains a hamiltonian $u-v$ path. The value hc(c) of a hamiltonian coloring c of G is the maximum color assigned to a vertex of G. The hamiltonian chromatic number hc(G) of G is $\min \{h c(c)\}$ over all hamiltonian
colorings c of G . A hamiltonian coloring c of G is a minimum hamiltonian coloring if $h c(c)=h c(G)$.

A graph G is hamiltonian-connected (1f) for every pair u, v of distinct vertices of G, there is a hamiltonian $u-v$ path. Consequently, we have thefollowing fact.

OBSERVATION

Let G be a connected graph. Then $\mathrm{hc}(\mathrm{G})=1$ if and onlyif G is hamiltonian-connected.

In a certain sense, the hamiltonian chromatic number of a connected graph G measures how close G is to being hamiltonianconnected, the nearer the hamiltonian chromatic number of a connected graph G is to 1 , the closer G is to being hamiltonian-connected

Fig. 1. A hamiltonian coloring c_{0} of G.

Fig. 2. An antipodal coloring c^{\prime} of G_{n}.
from H by adding a pendant edge, then $\mathrm{hc}(\mathrm{G})=\mathrm{n}-1$.

2. Graphs with equal hamiltonian chromatic number and antipodal chromatic number

Since the path Pn is the only graph G of order n for which diam $\mathrm{G}=\mathrm{n}$
-1 , we have the following.

Observation

If G is a path, then $\mathrm{hc}(\mathrm{G})=\mathrm{ac}(\mathrm{G})$
In [4] it was shown that ac(Pn) $\mathrm{n}-12+1$ for every positive integer n. Moreover, it was shown in [5] that $\mathrm{ac}(\mathrm{Pn}) \mathrm{n}-12-(\mathrm{n}-$ 1)/2 +4 for odd integers n7. Therefore, we have the following.

Lemma 2.2. Let H be a hamiltonian graph of order $n-13$. If G is a graph obtained

Proof. Let C : v1, v2,...,vn-1, v1 be a hamiltonian cycle of H and let v1vn be the pendant edge of G. Let c be a hamiltonian coloring of G. Since $D(u, v) n-2$ for all $u, v \in$ $\mathrm{V}(\mathrm{C})$, there is no pair of vertices in C that are coloredthe same by c . This implies that $\mathrm{hc}(\mathrm{c}) \mathrm{n}-1$ an d so $\mathrm{hc}(\mathrm{G}) \mathrm{n}-1$.

Define a coloring c 0 of G by c 0 (vi) $=\mathrm{i}$ for 1 in -1 and $\mathrm{c} 0(\mathrm{vn})=\mathrm{n}-1$ (see Fig. 1). We show that c 0 is a hamiltonian coloring of G

For n4, let Gn be the graph obtained from the complete graph $\mathrm{Kn}-1$ by adding a pendant edge. Then Gn has order n and diameter 2. Let $\mathrm{V}(\mathrm{Gn})=\{\mathrm{v} 1, \mathrm{v} 2, \ldots, \mathrm{vn}\}$, where deg vn $=1$ and $v n-1 v n \in E(G)$. By

Lemma2.3, hc(Gn) $=\mathrm{n}-1$. We now show that $\operatorname{ac}(\mathrm{Gn})=\operatorname{hc}(\mathrm{Gn})=\mathrm{n}-1$. Let c be an antipodal coloring of Gn. Since diam $\mathrm{Gn}=$ 2, it follows that the colorsc(v1), c(v2), . . , $\mathrm{c}(\mathrm{vn}-1)$ are distinct and so $\mathrm{ac}(\mathrm{Gn}) \mathrm{n}-1$. Moreover, thecoloring c of Gn defined by c $(\mathrm{vi})=\mathrm{i}$ for $1 \mathrm{in}-1, \mathrm{c}(\mathrm{vn})=1$ is an antipodal coloring of Gn (see Fig. 2) and so $\operatorname{ac}(\mathrm{Gn})=\mathrm{n}-1$. Hence there is an infiniteclass of graphs G of diameter 2 such that $\mathrm{hc}(\mathrm{G})=$ $\mathrm{ac}(\mathrm{G})$.

We now show that there exists an infinite class of graphs G of diameter 3 such that $\mathrm{hc}(\mathrm{G})=\mathrm{ac}(\mathrm{G})$.

3. Hamiltonian chromatic numbers of some special classes of graphs

Since the complete graph Kn is hamiltonian-connected, $\mathrm{hc}(\mathrm{Kn})=1 . \mathrm{We}$ state this below for later reference.

Observation

For $\mathrm{n} 1, \mathrm{hc}(\mathrm{Kn})=1$.

We now consider the complete bipartite graphs Kr ,s, beginning with Kr ,r. The graph Kr, r has order $\mathrm{n}=2 \mathrm{r}$ and is hamiltonian but is not hamiltonian- connected. For distinct vertices u and v of Kr, r,

Therefore, for a hamiltonian coloring of Kr, r, every two nonadjacent vertices must be colored differently (while adjacent vertices can be colored the same). This implies that $\mathrm{hc}(\mathrm{Kr}, \mathrm{r})=(\mathrm{Kr}, \mathrm{r})=\mathrm{r}$.

We now determine $\mathrm{hc}(\mathrm{Kr}, \mathrm{s})$ with r less than s , beginning with $\mathrm{r}=1$.

If T is a spanning tree of a connected graph G , then $\mathrm{hc}(\mathrm{G})<\mathrm{hc}(\mathrm{T})$. The following lemma will also be useful to us. The complement G of a graph G is the graph with vertex set V (G) such that two vertices are adjacent in G if and only if they are not adjacent in G.

If T is a tree of order at least 4 that is not a star, then T contains a hamiltonian path.

We proceed by induction on the order n of T . For $\mathrm{n}=4$, the path P 4 of order 4 is the only tree of order 4 that is not a star. Since P4 = P4, the result holds for $\mathrm{n}=4$. Assume that for every tree of order $k-1>4$ that is not a star, its complement contains a hamiltonian path. Now let T be a tree of order k that is not a star. Then T contains an end-vertex v such that $\mathrm{T}-\mathrm{v}$ is not a star. By the induction hypothesis, $\mathrm{T}-\mathrm{v}$ contains a hamiltonian path, say v1, v2,...,vk-1. Since v is anend-
vertex of T , it follows that v is adjacent to at most one of v 1 and $\mathrm{vk}-1$. Without loss of generality, assume that v 1 and v are not adjacent in T. Then v and $v 1$ are adjacent in T and so $\mathrm{v}, \mathrm{v} 1, \mathrm{v} 2, \ldots, \mathrm{vk}-1$ is a hamiltonian path in T .

Let G be a connected graph of order $n>5$. If there exists a hamiltonian coloring c of G with hc>4 satisfying one of the following conditions:
(1) $\operatorname{Seq}(\mathrm{c})=(1,2, \operatorname{hc}(\mathrm{c})-1, \operatorname{hc}(\mathrm{c}))$;
(2) $\operatorname{Seq}(\mathrm{c})=(1, \operatorname{hc}(\mathrm{c})-1, \operatorname{hc}(\mathrm{c}))$ and there exists a c-pair S with $\mathrm{c}(\mathrm{S})=1$;
(3) $\operatorname{Seq}(\mathrm{c})=(1,2, \mathrm{hc}(\mathrm{c}))$ and there exists a $\mathrm{c}-$ pair S with $\mathrm{c}(\mathrm{S})=\mathrm{hc}(\mathrm{c})$; then $\operatorname{cir}(\mathrm{G})>\mathrm{n}-1$.

CONCLUSION

It was shown that if T is a spanning tree of a connected graph G, then $h c(G)<h c(T)$. It is clear that if G is a connected graph of order at least 4 that is not a star, then G is spanned by a tree that is not a star. Thus the following corollary is an immediate consequence of Theorem. There exists no connected graph G of order n 5 such that $\mathrm{hc}(\mathrm{G})=(\mathrm{n}-2)^{2}$. Furthermore, if G is a connected graph of order $n 5$ that is not a star, then hc(G) $(n-2)^{2}$ -1 . It was shown in [7] that hc(G) $(\mathrm{n}-2)^{2}+$ 1 for every connected graph of order $\mathrm{n}>2$. The identity holds ifand only if G is a star. It was also shown that if $n=5$, then there exists no connected graph oforder n with $\mathrm{hc}(\mathrm{G})=(\mathrm{n}$

- 2) 2. Corollary 4.3 is an extension ofthis result for all $\mathrm{n}>5$.

REFERENCES

[1] G. Chartrand, D. Erwin, F. Harary, P. Zhang, Radio labelings of graphs, Bull. Inst. Combin. Appl. 33 (2001) 77-85.
[2] G. Chartrand, D. Erwin, P. Zhang, A graph labeling problem suggested by FM channel restrictions, Bull. Inst. Combin. Appl., to appear.
[3] G. Chartrand, D. Erwin, P. Zhang, Radio antipodal colorings of cycles, Congr. Number. (2000) 129-141.
[4] G. Chartrand, D. Erwin, P. Zhang, Radio antipodal colorings of graphs, Math. Bohem. 127 (2002) 57-69.
[5] G. Chartrand, L. Nebeský, P. Zhang, Radio k-colorings of paths, Discuss. Math. Graph Theory 24 (2004) 5211.

