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Abstract—Multiuser multiple-input multiple-output (MU- MIMO) nonlinear precoding techniques face the problem of poor 

computational scalability to the size of the network. In this paper, the fundamental problem of MU-MIMO scalability is tackled 

through a novel signal-processing approach, which is called degree-2 vector perturbation (D2VP). Unlike the conventional VP 

approaches that aim at minimizing the transmit-to-receive energy ratio through searching over an N -dimensional Euclidean 

space, D2VP shares the same target through an iterative-optimization procedure. Each iteration performs vector perturbation 

over two optimally selected subspaces. By this means, the computational complexity is managed to be in the cubic order of the 

size of MU- MIMO, and this mainly comes from the inverse of the channel matrix. In terms of the performance, it is  shown  

that  D2VP offers comparable bit-error-rate to the sphere encoding approach for the case of small MU-MIMO. For the case of 

medium and large  MU-MIMO when the sphere encoding does not apply due to unimplementable complexity, D2VP 

outperforms the lattice- reduction VP by around 5-10 dB in Eb/No and 10-50 dB in normalized computational complexity. 

 

Index Terms—Low complexity, multiuser multiple-input multiple-output (MU-MIMO), nonlinear precoding, vector per- 

turbat   

 

 

INTRODUCTION 
EXT generation of broadband mobile internet (namely 

5G) is expected to support several orders of magnitude in 

capacity compared with that in 4G and its evolutions. There 

are several ways of achieving such huge capacity through 

densification of cells, massive multiple-input multiple-output 

(MIMO) and new extended bandwidth and their combination 

[1]. This paper presents a novel multiuser (MU) MIMO 

nonlinear precoding (NLP) approach for the downlink of MU-

MIMO networks, of which the computational complexity 

scales linearly with the size of the MIMO networks, and the 

performance can be better than the state-of-the-art by 10 dB 

or more in Eb/No. broadcast channel. Theoretically, the sum-

rate capacity of such a channel grows linearly with the number 

of spatial-domain DoF [2], [3], and it can be achieved through 

multi-antenna dirty-paper coding (DPC) [3], [4]. However, 

the practical implementation of multi-antenna DPC faces 

great challenges of computational scalability to the size of the 

MIMO network; 

and today only small-scale MU-MIMO (up to 8×8) with 
linear precoding is adopted in 4G standards. 

In the last decade, a number of remarkable 

contributions have been reported in the scope of multi-

antenna DPC, which include nested lattice [5], [6], trellis 

precoding [7], V-BLAST precoding [8] and vector 

perturbation (VP) [9]. It has been shown that the VP 

technique can achieve near-optimum perfor- mance at all 

signal-to-noise ratios (SNRs) [10]. Nevertheless, the VP 

technique also faces big problems of the computational 

scalability. Specifically, the optimum VP technique aims 

at solving an integer least-square (ILS) problem, which 

theoreti- cally requires exhaustive search over an infinite 

set of integers in the N -dimensional Euclidean space. 

Such an approach costs infinite number of arithmetic 

operations, and thus it is not possible to implement. The 

sphere encoding (SE) VP approach proposed in [10] 

successfully avoids the problem of infinite searching by  

 

 

 

 

 

ASSISTANT PROFESSOR1,2,3, STUDENT 4 

Department of ECE 
Arjun College Of Technology & Sciences 

Approved by AICTE& Affiliated to JNTUH 

SPONSORED BY BRILLIANT BELLS EDUCATIONAL SCOITEY 
 

 

 

 

 

 

 

 

 

 

 



 

3 

 

conducting tree searching over a finite set of 

integers. However, the computational complexity of SE-

VP still scales exponentially with the size of the 

network. 

One of sustainable approaches that can dramatically 
reduce 

the computational complexity is the lattice reduction 

(LR), which has been widely investigated for both the 

uplink MIMO detection [11] and the downlink MIMO 

nonlinear precoding (NLP) [12]. It has been shown 

that the LR-VP approach is 

a sub-optimum NLP at the cost of computational 

complex- ity between O(N 4) and O(N 5). Such a large 
reduction in computational complexity is certainly 
impressive. However, the complexity is still too high for 
the LR-VP approach to be implemented using the 
current digital-signal-processor (DSP) 

technology. It is possible to further trade off the 

performance for lower complexity through for instance 

the V-BLAST approach [8], [10]. However, the V-

BLAST approach still costs expensive computational 

complexity, which is in the order of 

O(N 4). Moreover, the performance of V-BLAST is only 

2-3 
dB better than that of linear zero-forcing (ZF) precoding. 

Certainly, one can find more MU-MIMO NLP 

approaches in the literature (e.g. [13], [14]). Most of 

existing approaches were looking for a good tradeoff 

between the performance and complexity. The question 

is: is it possible to find a precoding technique that can 

show excellence in both the performance 

and complexity? If the answer is ―yes‖, then such a 

technique can bring MU-MIMO NLP much closer to 

fruition. 

 
A. Contribution 

Motivated by the above question, a novel MU-MIMO 
NLP approach, named degree-2 vector perturbation 
(D2VP), is proposed in this paper. It will be shown that the 
D2VP approach outperforms the LR-VP approach by around 

5 − 10 dB in SNR (subject to the size of MU-MIMO 
networks), 

and it manages the computational complexity in the 

order of O(N 3), which mainly comes from the inverse of 
the MIMO channel matrix. Therefore, the D2VP approach 
offers competitive computational complexity in comparison 

to the linear ZF approach (see [15], [16]) with more than 10 
dB performance improvement in SNR. 

The basic idea of D2VP comes from an important phe- 

nomenon: for the VP technique aiming to minimize the 

transmit-to-receive energy ratio, the majority of the con- 

tribution comes from a small portion of the subspaces in 

the N -dimensional Euclidean space
1
. This means that the 

perturbation vector is sparse in nature. With this interesting 

phenomenon in mind, the VP optimization process does not 

need to search the entire Euclidean space for the global 

optimum point. Instead, it can break down the optimization 

process into several iterations, with each performing local 

optimization based on two optimally selected subspaces. By 

this means,  given a finite  set of  integers with the size 

K, 

the complexity paid for exhaustive search in the two 

selected subspaces is O(K2). In fact, the exhaustive search is 

not needed in the D2VP optimization process. In Section 
III, it will be shown that D2VP forms a simple convex 
optimization problem, of which the local optimum point 
can be found 

in a closed form. This immediately reduces the optimization 

complexity from the square order to linear. In addition to the 

new concept, other major contributions of this paper 

include: 

• Determine the subspaces of interest in the iterative pro- 

cess of D2VP. To this end, an optimum D2VP 

approach is developed through exhaustive search over 

all possible combinations of the subspaces. This 

approach ensures the best combination of subspaces 

with the complexity of O(N (N − 1)). In order to 

reduce the computational 
complexity, a complexity-reduced (CR) D2VP 
approach 

• Generally, the perturbation vector can be either 
complex or real. In Section V, it will be shown that 
the real version offers comparable performance to 
the complex version when the size of MU-MIMO 

is sufficiently large (e.g. N ≥ 64). Therefore, the 
real version can be a better approach for  the case 
of  large  MU-MIMO due  to its 

relatively low computational complexity. 

• In fully-loaded MU-MIMO systems, most of VP-

based NLP approaches do not get their performance 

improved when the size of MU-MIMO increases. 

Our computer simulations show that it is not the 

case for the D2VP approach. When the size of 

MU-MIMO is small (e.g. N ≤ 8), the optimum 

D2VP approach has its perfor- 
mance improved with the increase of the MU-MIMO 
size. 
It means that the optimum D2VP can enjoy the 

spatial- domain diversity gain in the case of small 

MU-MIMO. 

• In addition to the D2VP approach, we have also 

experi- mentally examined an extended approach, 

which is called degree-3 vector perturbation 

(D3VP). Although D3VP largely increases the 

computational complexity, our com- puter 

simulations show that it outperforms D2VP by up 

to 2 dB in SNR for the case of small MU-MIMO. 

This result encourages us to investigate the best 

performance- complexity tradeoff of the sparse 

vector perturbation, which could be a piece of 

interesting future work. 

The rest of this paper is organized as follows. 

Section II is the preliminary section, which includes the 

system model of MU-MIMO, basic assumptions, 

concept of vector perturba- tion, as well as the problem 

formulation. The basic concept of D2VP and the 

algorithm optimization are presented in Section 

III. The RC-D2VP approach is presented in Section IV. 

Section V provides the simulation results and 

performance evaluation. The conclusion is drawn in 

Section VI. 

PRELIMINARY 

A. Vector Perturbation and Optimization 

The original work of VP is built upon a discrete-time 

equivalent baseband model, which describes the link-

level of a wireless system including an access point with 
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M transmit antennas and N individual users. Each user 

has one receive antenna (see [9]). The observed signal 

at the nth user is 

is proposed by selecting the subspaces which 

minimize the impact of the largest singular values of 

the channel

Hence, the ILS problem in (7) does not lead to a 
maximum- likelihood solution. Moreover, the linear 
minimum mean- square error approach widely used for 
the MU-MIMO detec- tion is not applicable to (7). On 
the other hand, the principle 

of sphere decoding can still be employed to solve (7) as 

long as ω is restricted to a finite set of integers (this is 
known as the SE-VP approach); and the lattice-reduction 
approach can also be employed to regularize the channel 
inverse matrix 

H†. Nevertheless, as we have already discussed in 
Section I, none of existing approaches is saturated in 
terms of the 

performance-complexity tradeoff, and thus the D2VP 

approach is motivated. 

the technique with full CSIT provides the upper bound 

of the data rate. 

Regarding the dimension and regularity of H, we found 

the 
discussion in [9] already quite comprehensive. Here, we 
stress that the number of spatial-domain DoF equals to 

the rank of H, which puts an upper limit onto the 

number of orthogonal data-streams. Without loss of 

generality, we therefore can assume M ≥ N and N = 
Rank(H). It is worthwhile to note that future wireless 
networks will be super dense in nature, 

and very demanding to the highly spectral efficiency. To 

this end, the number of spatial-domain DoF should be 

as large as possible, and thus the spatial domain is very 

likely to be fully loaded. In this case, the linear MU-

MIMO precoding techniques are far away from the 

optimum [22]. Therefore, in the rest of the paper, we 

consider the case M = N for its critical position in 

future super dense networks. 

1) User equality in date rate: In the original VP 

problem, it is assumed that all the users (receivers) have 

the same data rate (modulation). We also recognize this as 

a practical assumption. For instance in UMTS or LTE-A 

networks, the data rate is of- ten region specific. The 

data regions are classified according to the large-scale 

path loss between the transmitter and receivers [23], 

[24]. In this case, users located in the same data region 

can be scheduled with the VP-based spatial-domain 

multiple- access (SDMA), and those located in different 

data regions can be scheduled on different time or 

frequency resources. 

2) Synchronization issues: We recognize 
synchronization 

as one of critical issues in the area of MU-MIMO 

processing. The issue of timing synchronization can be 

relatively easy to solve by employing the time-domain 

guard interval or cyclic prefix. However, the frequency 

synchronization is indeed a big concern for the practical 

implementation of MU-MIMO systems. Nevertheless, 

there have been already a lot of on- going research 

activities in the scopes of synchronization and waveform 

design (e.g. [25]), and thus in this paper we assume 

the perfect case of synchronization so that our technical 

presentation can be focused on the immediate problem of 

interest. 

 
II. DEGREE-2 SPARSE VECTOR PERTURBATION 

A. Concept and Rationale 

Definition 1: The sparsity of perturbation vector refers to 

the phenomenon: every element of ω has a large 
probability to be zero after the vector perturbation. 

Equivalently, when the size of ω is large, most of the 

elements in ω are zero. 
According to the simulation results in [14], the 
probability 

for an element of ω to be zero is around 80% or more. 
This phenomenon has been confirmed through our computer 
simulations (see Section V). 

Definition 2: D2VP is a low-complexity vector 

perturbation technique, which takes advantage of the sparsity 

of perturba- tion vector in the matrix-regularization 

procedure. Similar to the original VP technique, the 

objective of D2VP is also to 

handle the ILS problem (7). Instead of manipulating all the 

elements of the perturbation vector ω, the idea of D2VP is 

to break down the matrix-regularization process into several 

iterations, each performing the matrix-regularization based on 

two appropriately selected elements of ω. 

Let us take the ith iteration as an example to elaborate 

the basic concept of D2VP. Note that, for each iteration, the 

terms  ̄s  and  ω∗  will  be  updated,  and  thus  in  the  following 

expressions they are labelled with the index (i). Then, the 

objective function of the ith iteration is 

ω∗(i) = argminǁs̄(i − 1) − αH†ωǁ
2, (8)  the 

complexity paid for searching over the finite set is in the 

square order. Note that the optimization procedure of 

(11) requires to visit all possible states of (n1, n2), which 

also costs square-order complexity. Then, the overall cost of 

computational complexity is in the order of four, which is 

certainly too expensive. In Section III, we will demonstrate 

an optimum D2VP approach, with which the optimum point 

of (11) can be found in a closed form. 

Iterative process and convergence: In general, D2VP is a 

sub-optimum VP approach due to the reduced number of 

subspaces (or equivalently the reduced number of non- 

zero elements in ω) involved in the optimization procedure. 

Nevertheless, the optimality of D2VP can be improved through 

the iterative process described by (8)-(10). 

Consider the outcome of the ith iteration, i.e., ω∗(i) and 

s̄(i). The vector ω∗(i) has two possible states: 1) ω∗(i) = 0, 

or  2)  ω∗(i)  =/    0.  For  the  state  of  ω∗(i)  =  0,  (9)  shows 

that  s̄(i)   =   s̄(i  − 1),  with  which  more  iterations  would 

not further improve the performance, and thus the iterative 

process terminates. For the state of ω∗(i) /= 0, the 

objective function  (8)  assures  ǁs̄(i)ǁ <  ǁs̄(i − 1)ǁ,  which  

means  that the performance of D2VP has been further 

improved. Note 

that each iteration aims at reaching a local optimum based on 

the previous outcome s̄(i − 1), therefore the iterative process 

functions as the neighbourhood search [26], which will quickly 
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converge to a local optimum solution. 

and δ2   is upper bounded by 

of ωr. Then, the objective function (11) still holds, and the 

optimum D2VP approach presented in Section III-B can be 
straightforwardly employed to obtain the optimum solution in 

the case of complex ω. 

The only difference between the cases with complex and real 

version of ω is: the complex version requires searching over 

N (2N − 1) possible states of (n1, n2), and this increases the 

computational complexity by around 3 folds. On the other 

hand, since ωc doubles the length of the perturbation vector, 

the error term εl  in (14)-(16) is largely reduced. Moreover, 

it is easy to understand that the real version is a subset of 

the complex version. Therefore, the complex version should 

outperform the real version in terms of the performance 

optimality, and this conclusion has been confirmed through 

the computer simulations (see Section V). 

 
B. Analysis of Computational Complexity 

The overall computational complexity of the optimum 
D2VP approach is easy to calculate. Take the real 

version of ω as an example. For each iteration, the 
optimum D2VP 

approach spends the complexity of N(N−1) for the 

exhaustive 
search over all possible states of (n1, n2). Moreover, for 
each 

state, we need to search all candidates of δn1 . Given the total 

number of I iterations as well as the maximum of L 
candidates of δn1 , the overall computational complexity is 

Fig. 1. Showcase the ratio of λn/λ1 with respect to the size of MU-
MIMO (N = 4, 12, 64, 128). 

 

 

according to the i.i.d. complex Gaussian distribution, Σ 
can have very small singular values, but the probability 
for a singular value to be zero is negligibly small. 

Hence, we have Σ† = Σ−1 hold in general. With this 

fact in mind, we apply 
(27) into (7) and obtain 

proach requires the computational complexity in order of 

four. This is  because the variables I and L are not a  

function of N ; and for most of the cases, we have L ≤ 2 and 

I ≤ 3. Therefore, the computational complexity for the real 
version 

COMPLEXITY-REDUCED APPROACH OF D2VP Section III-D 

has shown that, apart from the inverse of 
the channel matrix, the major complexity  of the 
optimum 
D2VP approach comes from searching over all possible 

states of (n1, n2). However, due to the randomness of the 

channel matrix H, it is unlikely to identify the best state of 

(n , n ) without employment of the exhaustive search. 

Therefore, the objective of this section is to propose a 

complex-reduced (CR) approach of D2VP, which can avoid 

the exhaustive search at the price of the performance. 

Given the singular-value decomposition (SVD): H 
= 

VH ΣU, the SVD of H† is 

H† = UH Σ†V,
 (2

7) 

where U, V is unitary matrix, and Σ a diagonal matrix with 

the singular values of H on its diagonal. When H is 
generated 

It is of our interest to study the ratio λn/λ1,∀n, with 
various configurations of the size of MU-MIMO, which 
is illustrated in Fig. 1. It is observed that the ratio λn/λ1 
drops rapidly with the increase of n. For most of the 
singular values, the ratio 

λn/λ1  is negligibly small  (< 0.1), and only a small 

portion of the singular values dominate the objective 

function (31). herefore, we can form an approximate 

version of (31) 

  

Indeed, finding the optimum solution of (34) still costs 
the 

computational complexity in an exponential order. 

However, we are able to find a D2VP approach, which 

offers a sub- optimum solution to (34). 

Denote v1,n to be the nth element of v1. Fig. 2 shows 

an example of N = 4, where the elements of v1 are 
randomly distributed in a complex plane. Two of the 
elements (i.e., 

v1,3 and v1,4) are composed into a new complex, which is 

very close to the complex vT s. In the procedure of complex 

composition, the two real integers ω3 and ω4 are utilized to 

scale the complex elements v1,3 and v1,4, respectively. 

In terms of computing, there are many ways of selecting 
the two elements of v1 (or correspondingly the two elements 

of ω). A straightforward way is to exhaustively visit all 
possible combinations of any two components of v1. This 
of course 

leads to the best selection at the price of a square-order of 

the computational complexity, and thus the exhaustive 

search is not a favourable approach. Here, we propose a 

simple approach of selection. 

Denote ∠(vT s) to be the phase of vT s. The proposed 
approach first computes 

By this means, we will have at most N candidates of 

ω2, with which Theorem 1 can be employed to 
determine the best one for performing the D2VP 
processing. However, the 

computational complexity of the RC-D2VP approach 

increases to O(NN ). 

 
III. COMPUTER SIMULATIONS AND 

PERFORMANCE 

EVALU

ATION 

The primary objective of computer simulations is to 

exam- ine the link-level scalability of the D2VP 

nonlinear precoding technique with respect to the size of 

MU-MIMO networks. The key performance metrics are 

the bit-error-rate (BER) performance and computational 

complexity. The baseline for performance comparison 

includes three techniques, which are the SE-VP, LR-VP, 

as well as the linear ZF precoding. The SE- VP technique 
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1 

should offer the best performance for the small size of 

MU-MIMO (e.g. N = 4). However, the computational 

complexity of SE-VP increases exponentially with 

respect to the size of MU-MIMO, and thus for the 

medium and large 

size of MU-MIMO (e.g. N   ≥ 8), we employ  

the LR-VP 

 

 performance-complexity tradeoff. In terms of the performance, 

which includes the angles and complementary angles 

between v1,n and vT s. Then, we find the smallest positive 

value and the largest negative value of ψn. If these two 
values are corresponding to two different elements of 

v1,n, then we said that the desired elements have been 

found; or otherwise assuming ψ1(> 0) and ψ2(< 0) to be the 

angles of interest with |ψ1| > |ψ2|, we suggest to replace 
ψ1 with the second smallest positive value of ψn. By this 

means, we are able to find two elements of v1 (or 

equivalently ω), which can formthe linear ZF precoding 
surely performs the worst. However, it features the lowest 
computational complexity, and thus serves as an excellent 
baseline to evaluate the complexity cost of the D2VP 
technique. It is worthwhile to note that the V-BLAST based 
NLP technique is not employed for the performance 
comparison. This is mainly because the LR-VP technique 
has been proved to be better than the V-BLAST technique in 
terms of the performance [12], and we omit the V-BLAST 
results for the sake of delivering a concise presentation. 

In our computer simulations, the MU-MIMO system was 

configured exactly the same as that has been introduced in Sec- 

tion II. Each entry of the channel matrix H was independently 

generated according to the complex Gaussian distribution 

with normalised variance. We recognize the fact that the 

entries of H can be statistically correlated in practice, and 

the wireless communication channels are mostly frequency 

selective. However, we note that the channel correlation will 

only reduce the number of DoF in the spatial domain, and this 

is equivalent to the case of reducing the size of uncorrelated 

MIMO in our simulation model. Moreover, we assume that 

the frequency-selective channel can be nicely converted into 

a number of parallel flat sub-channels through employment of 

multi-carrier transmissions, and our interest is focused on one 

of the sub-channels. In fact, similar simulation setup has been 

widely adopted by most of previous works in this scope. 

hannel realizations. The SNR is defined by the average 

received bit-energy per antenna to noise ratio. It is worthwhile 

to note that our simulations are mainly for an uncoded source 

with 4-QAM modulation (16-QAM will also be examined 

mainly for the sake of elaboration). This is because the VP 

technique has already been well evaluated for the coded 

sources and optimized for various order of QAM modulations 

(see [10]). Since the D2VP technique does not change the 

basic structure of VP, and our simulations are used mainly for 

the evaluation of large MU-MIMO systems, uncoded source 

is considered to be a more cost-effective option for the 

computer simulations. 

Specifically, our computer simulations are structured into the 

following four experiments. 

Experiment 1: The objective of this experiment is to exam- 

ine the performance of the optimum D2VP approach when the 

perturbation vector ω is complex. Fig. 3 illustrates the BER 

results as a function of Eb/No for the case of 4 × 4 MU- 

MIMO (i.e., N = 4). Generally, the SE-VP approach gives 

the best BER performance; and there is a large SNR gap (10 

dB difference in Eb/No) observed between the SE-VP and the 

linear ZF precoding. The LR-VP approach shows up to 2 dB 

difference in Eb/No in comparison with the SE-VP approach. 

The maximal gap appears at the medium SNRs (Eb/No= 8- 10 

dB). Moreover, at the high SNR (Eb/No= 20dB), the LR- VP 

approach performs even better than the SE-VP approach. This 

result is however not surprising. The major reason is that the 

SE-VP approach was searching for the optimum 

solution  within  a  finite  set  of  integers, i.e.,  {−j, −1, 0, 1, 

j}. Such approximation is acceptable at low and medium 

SNRs; 

however it results in considerable optimality loss at high SNRs. 

 
Now, let us take a close look of the optimum D2VP approach. 

It is observed that the D2VP approach offers very close 

performance to the SE-VP at low and medium SNRs (Eb/No≤ 

10 dB). Moreover, it outperforms the LR-VP ap- 

proach by around 2 dB in Eb/No. However, when Eb/No is as 

high as 16 dB or above, D2VP performs worse than the LR-VP 

approach. This is because the D2VP approach only utilizes two 

subspaces per iteration for conducting the vector perturbation, 

Experiment 3: The objective of this experiment is to exam- 

ine the performance of CR-D2VP as well as the performance- 

complexity tradeoff of various VP approaches. The perfor- 

mance comparison between the CR-D2VP and optimum D2VP 

is provided in Fig. 8. Both approaches use the complex 

vector perturbation. For the case of N = 4, the CR-D2VP 

approach (with N = 2) shows relatively close performance 

to the optimum D2VP approach particularly for the low 

and medium SNR range (Eb/No<12 dB). For the case of 

N = 256, the CR-D2VP approach (with N =  2) shows 

about 6 dB SNR gap when comparing to the optimum D2VP 

approach. It is clear that the configuration of N = 2 is too 

approximate in terms of the performance optimality. Surely, 

ulation. It is probably also interesting to see how the D2VP 

approaches behaviour for higher-order modulations. Since the 

optimum configuration of VP with respect to the QAM modu- 

lation schemes has been well studied in [10], here we pick up 

16-QAM as a showcase to demonstrate the BER performance 

as a function of N (Eb/No=12 dB). The simulation results are 

depicted in Fig. 10. It is observed that the D2VP approaches 

significantly outperform the LR-VP approach. Particularly, 

the optimum D2VP can largely improve the BER performance 

for 

the case of N ≥ 12. Fig. 11 shows the computational complex- 

ity of NLP techniques, which is normalized by the complexity 

of ZF precoding. It is shown that the D2VP approaches can 

significantly reduce the computational complexity of NLP. 

The complexity reduction is about 10 − 50 dB (subject to the 

size of MU-MIMO) when comparing with the LR-VP 

approach. 

More interestingly, the D2VP approaches show almost similar 

complexity as the ZF precoding when the size of MU-MIMO 

becomes large (e.g. N ≥ 12). This is because, in the case of 

large MU-MIMO, the computational complexity of D2VP is 

dominated by the operation of channel matrix inverse. 

Experiment 4: The objective of this experiment is to ex- 

amine the convergence behaviour of the D2VP approaches. 

Fig. 12 shows the BER performance of the optimum D2VP 

technique as the main baseline due to its well-recognized 

, (35) 
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n1 

(complex version) with respect to the number of iterations. 

For the case of N = 4, the performance does not get 

improved after just two iterations. The difference between 

the 1st iteration and the 2nd iteration is negligibly small. For 

the case of N = 64, the performance of D2VP does not get 

considerably improved after three iterations. 

Fig. 13 demonstrates the convergence behaviour of both the 

CR-D2VP (N =  2) and optimum D2VP for various cases 

of N . The CR-D2VP approach shows the performance 

converged after one or two iterations. The optimum D2VP gets 

its performance considerably improved by employing three 

iterations. For the case of large MU-MIMO (e.g. N ≥ 128), 

more iterations can further improve the performance of the 

optimum D2VP approach, although the improvement is not 

as large as the first three iterations. When the size of MU- 

MIMO is relatively small (e.g. N ≤ 64), the performance 

improvement is not considerable after three iterations. 

 

CONCLUSION 

In this paper, we have presented a novel multi-antenna 

nonlinear precoding technique, which demonstrated excellent 

performance and complexity scalability to the size of MU- 

MIMO networks. By exploiting the sparse nature of the pertur- 

bation vector, the proposed technique tackles the integer least- 

square optimization problem through several iterations, with 

each performs degree-2 vector perturbation. By this means, 

the N -dimensional ILS optimization problem is effectively 

Hence, the lower bound in (44) has to be no larger than the 

upper bound in (45). By solving this inequality we will get 

the upper bound in (24), and Theorem 1 is therefore proved. 
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