ISSN: 2454-9940

INTERNATIONAL JOURNAL OF APPLIED SCIENCE ENGINEERING AND MANAGEMENT

E-Mail : editor.ijasem@gmail.com editor@ijasem.org

Model-based analysis of speech and audio signals for real-time processing based on time-varying lattice filters

Mr.JADA LINGAIAH , Mr.JEEDIMADLA VENKATESHAM, Miss R.JAHANVI, GONE RAKESH

ABSTRACT

This article presents a new class of constrained and specialized Auto-Regressive (AR) processes. They are derived from lattice fil- ters where some reflection coefficients are forced to zero at a priori locations. Optimizing the filter topology allows to build paramet- ric spectral models that have a greater number of poles than the number of parameters needed to describe their location. These NUT (Non-Uniform Topology) models are assessed by evaluating the reduction of modeling error with respect to conventional AR models.

INTRODUCTION

Lattice filters are a well-known signal analysis and coding tool. Their parameters, the reflection coefficients, have a good robustness to noise and quantization effects [1]. These filters also present a formal analogy with the process of wave propagation into lossless discrete acoustic tube models (possibly used as vocal tract models) [2]. But they don't incorporate any other a priori knowledge about the process they represent. For instance, it is classically implied that the individual portions forming a discretized tube all have a unit length, whereas it may be more accurate to represent a priori knowledge about unequally spaced tube interfaces.

By generalizing the lattice formalism to the case of tube por- tions with any length, this article defines a class of processes, called Non-Uniform Topology (NUT) lattice processes, that rep- resent a constrained case of Auto-Regressive (AR) filtering. Sec- tion 2 is dedicated to the description of their formalism and general properties. Section 3 deals with the estimation of their parameters for signal analysis. Section 4 exposes experimental results that assess the spectral modeling accuracy of this new model.

is the transfer function of an order backward predictor, modeling

the past sample as a linear combi-nation of future

Constrained Linear Prediction

Generally speaking, all the relations that describe the mathematics of standard lattice filters are still valid in the framework of NUT lattices : they will only undergo formal modifications due to the in- clusion of zero-values at particular places. For instance, the trans- fer function of the forward-error filter remains a polynom in . Similarly, the backward predictor can be deduced from the forward predictor using the expression :Nevertheless, the inclusion of the a priori null values introduces interesting structural constraints to the Linear Prediction modeling method. Some of these constraints appear when computing the predic- tion coefficients from the reflection coefficients . This can be done through the classical Levinson procedure [1], but including the a priori null values at the relevant iterations. This procedure is described by :

ASSISTANT PROFESSOR^{1,2,3}, STUDENT⁴ Department of ECE Arjun College Of Technology & Sciences Approved by AICTE& Affiliated to JNTUH SPONSORED BY BRILLIANT BELLS EDUCATIONAL SCOITEY The last effect deserves particular attention, because it represents a way of constraining the autocorrelation function : the value for is turned into a linear combination of the pre- viously considered autocorrelation coefficients. This can be put in parallel with the fact that correlation between the forward and backward prediction errors is created only for some particular lags,

i.e. those where the reflections coefficients are not constantly null. Consequently, the corresponding power spectral density contains some "genuine" energy peaks together with peaks resulting from harmonic combinations. Spectral modeling with a NUT lattice is therefore more specialized than modeling with an unconstrained Auto-Regressive production models, since it accounts precisely for frequency combinations that comply with the underlying genera- tive model.

From equation (4), one can also remark that the global order of is equal to the sum of the various delays .

In the classical case, where , the global order is equal to the number of reflection coefficients. Conversely, in the NUT lattice case, the global order can be greater than the number of

MODELING METHOD

First optimization level: constrained estimators

methods. Following the remarks made in section 2.2, it can be observed that imposing non-uniform delays modifies the lag and the summation boundaries considered into the partial correlation measures that define the coefficients.

The stability of the constrained filters is preserved since forc-ing some reflection coefficients to zero respects the general sta-bility condition for a lattice filter [5], namely (everyshould have a value between and). Furthermore, it can be easily verified that the modified Burg and Itakura

estimators always generate values that lie between -1 and 1.

Second optimization level: optimal filter topology

Various repartitions of delays lead to different inverse filtering per- formances in terms of a higher or lower residual error for a sig- nal frame. It is therefore interesting to find the best performing topology given a number of degrees of freedom to be distributed over a given global order, i.e. to find the best match in the set of NUT production processes that respect the two specifications.

To search for the best configuration, all the filters in the set are generated and systematically used to inverse-filter a test frame. The one bringing the least residual error is regarded as the best topology. Figure 2 shows that this search plays a significant role in the accuracy of the model. Random configurations (dark bars) perform significantly worse than optimal ones (light bars).

Further constraints, such as a minimum delay order, can be filters have to be tested. Imposing the minimum delay to be noshorter than 2 units reduces this number to 245'157 filters. residual error in regular lattices and NUT lattices of

frame, and finding the ones that produce the least *mean* residual error. This would allow to build NUT lattices that are special-ized to the modeling of classes of signals instead of being spe- cialized to one particular frame [3], and would represent a sort of "macro quantization" of filter structures.

unconstrained reflection coefficients.

As a matter of fact, the reflection coefficients represent some intrinsic degrees of freedom (DoFs) for the equivalent linear predictor. Constraining some of them to be zero-valued amounts to reducing the intrinsic number of DoFs without changing the global order. Hence, the corresponding spectral model contains a number of poles greater than the number of parameters needed to describe their location. Alternately, a signal sample can be predicted from an increased portion of its past if the number of DoFs is kept fixed while the global order is grown.

In the following, the various lattice configurations will be identified by strings starting with the number of delay blocks expressed over the number of spanned unit delays, and followed by the enu- meration of their lengths. An example would be : [5/22:3x3,8,5.], which reads : "a NUT lattice with 5 cells spanning 22 unit-delays, and which has three order delays, one order delay and one order delay"2. The corresponding flow chart would look like :

imposed to the production process to make the number of tested filters more tractable (at the price of a reduced modeling accu- racy [3]). For instance, in the case of an [8/32] constraint, 2'629'575

1. EXPERIMENTAL RESULTS

The results presented in this paper have been computed from sig- nal frames extracted from a test sentence in French, spoken by a male speaker, recorded in a very quiet environment and sampled at 32kHz. When needed, the frames have been down-sampled to 24kHz or 8kHz using the polyphase method. Throughout the ex- periments, the modified Burg estimator and corresponding error criterion have been used.

Dependency to the signal - Table 2 gives the optimal filter config-urations found for frames of various vowels with a [13/24] con- straint. The configurations are naturally frame-dependent. As a follow-up, it would be interesting to check the stability of the topology optimization scheme across vowel classes.

Spectral shapes - Spectral shapes are computed from NUT lat- tices by evaluating the corresponding constrained All-Pole trans- fer function over the unit circle. The spectral shape obtained for aframe of /a/ is shown in figure 1(a). Again, it is clear that the topol- ogy optimization stage helps minimizing the spectral distortion in-duced by the reduction of the number of DoFs. In the optimal case, this distortion stays acceptable for low frequencies, in the sense that the first formants are reasonably well captured. This is confirmed by inspection of the pole locations given in figure 1(b),and has been observed for all the studied vowels.

Filter accuracy versus number of DoFs - Figure 3 compares the

type

[DoFs/24] as a function of the number of DoFs. It shows that opti-

Hence, indexing of the non-uniform configurations would use a lower number of bits.

Adequation with articulatory modeling - As pointed out in the in-troduction, the NUT lattice idea originally arose from the study of the analogy between lattice filtering and acoustic filtering in loss-less tubes [2, 4]. While the purpose of the present article was to describe and explore NUT lattices from a pure signal processing point of view, further experiments are needed to determine whether the second optimization layer is (o) and classical lattices (+) in function of the number of degrees of freedom (for a frame of vowel /a/ @ 24kHz).

mal NUT filters produce a lower residual error than unconstrained filters with and equal number of DoFs. The observed error reduc-tions typically range from a few percent to about 45% in the case of vowel /&/. Figure 4 shows the decrease of the residual error forthe reverse experiment, namely keeping a fixed number of DoFs (or parameters) and augmenting the global order of the lattice. The "flat" portions of the curve represent zones where only the last de- lay's order is increased, which does not change the forward error filter's transfer function (as seen in section 2.2).

2. POTENTIAL APPLICATIONS

Speech coding - The experimental results suggest that with NUT lattices, part of the signal coding task is transfered from the coeffi- cient values to the filter structure. A coding scheme exploiting this model would replace conventional reflection coefficients (or logarea ratios [1]) with coefficients distributed over a global order, plus a codeword to index the optimal filter topology. The quality compromise found by adjusting these specifications (in ad- dition to a classical coefficient quantization system) may allow toreach a better coding quality at a lower bit rate than unspecialized AR models.

A related research track would consist in learning the NUT filters configurations on speech segments that span more than one

specific relative formant positions).

Speech enhancement - Finally, using NUT filters trained on clean speech data for the parameterization of noisy speech may allow to increase the robustness of feature extraction schemes, because the filters would hopefully have retained some structure related to speech production.

CONCLUSION

We have presented a constrained parametric spectral model able to model more poles with fewer parameters. Results show that with the same number of degrees of freedom, this model is more accurate than a classical unconstrained All-Pole model. Potential applications are numerous.

REFERENCES

- [1] R. Viswanathan and J. Makhoul, "Quantization properties of transmission parameters in linear predictive systems," *IEEE trans. on Acoustics, Speech and Signal Processing*, vol. ASSP- 23, pp. 309–321, June 1975.
- [2] H. Wakita, "Direct estimation of the vocal-tract shape by in- verse filtering of acoustic speech waveforms," *IEEE Trans- actions on Audio and Electroacoustics*, pp. 417–427, October1973.
- [3] Sacha Krstulović and Frédéric Bimbot, "Inverse lattice fil- tering of speech with adapted non-uniform delays," in *Proc. ICSLP 2000*, 2000.
- [4] Sacha Krstulović, "Acoustico-articulatory inversion of unequal-length tube models through lattice inverse filtering,"IDIAP-RR 16, IDIAP, 1998.

able to capture actual acoustic phenomena (e.g., nodes of stationary sound waves, or speaker-

[5] J. Makhoul, "Stable and efficient lattice methods for linear prediction," *IEEE trans. on Acoustics, Speech and Signal Pro-cessing*, vol. ASSP-25, no. 5, pp. 423–428, October 1977.