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Abstract 
People usually interact with intelligent agents (IAs) when they have certaingoals to be accomplished. Sometimes these goals are complex and 

may requireinteracting with multiple applications, which may focus on different domains. CurrentIAs may be of limited use in such cases and 

the user needs to directly managethe task at hand. An ideal personal agent would be able to learn, over time, thesetasks spanning different 

resources. In this paper, we address the problem of crossdomaintask assistance in the context of spoken dialog systems, and describe 

ourapproach about discovering such tasks and how IAs learn to talk to users about thetask being carried out. Specifically we investigate how 

to learn user activity patternsin a smartphone environment that span multiple apps and how to incorporate user’sdescriptions about their 

high-level intents into human-agent interaction 
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Introduction 

Smart devices, such as smartphones or TVs, allow 

users to achieve their goals (intentions)through verbal 

and non-verbal communication. The intention 

sometimescan be fulfilled in one single domain (i.e., 

an app). However, the user’s intentionis possible to 

span multiple domains and requires information 

coordination amongthese domains. A human user, 

with the global context at hand, can well-organize 

thefunctionality provided by apps and coordinate 

information efficiently. On the other hand, although 

intelligentagents can be configured by developers to 

passively support(limited) types of cross-domain 

interactions, they are not capable of 

activelymanaging apps to satisfy a user’s potentially 

complex intentions, because they donot consider the 

repeated execution of activities in pursuit of user 

intentionsCurrently, most human-machine 

interactions are carried out via touch-screen.Although 

the vocabularies of recognizable gestures have been 

expanded during thepast decade [8], interactive 

expressions are still restricted due to the limit of 

gesturesand displays. This limit may affect usability, 

especially for certain populations, suchas older users 

or users with visual disabilities. By contrast, spoken 

language can effectivelyconvey the user’s high-level 

and complex intentions to a device. However,the 

challenges are: 1) understanding both at the level of 

individual apps and at thelevel of activities that span 

apps; and 2) communicating a task-level 

functionalitybetween user and agent. Our previous 

work focused on predicting user’s follow-upaction at 

app level [25] or understanding the current app-level 

intention [4]. Thispaper mainly addresses the high-

level intention-embedded language 

understanding.For example, our proposed model 

understands that “plan a dinner with Alex” is 

composedof several domains such as YELP, 

OPENTABLE and MESSENGER.  
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We alsoenable the system to verbally communicate 

its understanding of users intentions, inorder to 

maintain a transparent communication channelMulti-

domain dialog systems have been studied in the past 

[14, 19], where aclassic architecture contains 

multiple models developed independently for 

differentdomains and allows corresponding apps to 

handle user requests [11, 18, 3, 4]. Givena spoken 

utterance, a domain detector selects 1) a single 

domain [10, 18, 25, 4] or2) several domains based on 

the functionality in the user request [20, 21]. 

However,neither of the two approaches considered 

the user intention behind the multi-domaininteraction 

(i.e., why the user needs this set of domains). Our 

method bridges thelow-level surface forms in cross-

domain interactions and the high-level intention inthe 

user’s mind to enable systems to support intention 

realization. Moreover, consideringa personal 

assistant’s perspective, we compare personalized 

models withgeneric ones based on personal data 

availability.The rest of the paper is organized as 

follows: we first briefly describe a datacollection 

process to gather user’s real-life multi-domain tasks. 

Then we discuss themethodology to discover, 

recognized and realize user intentions. Two user 

studiesare described later as end-to-end and 

component-wise evaluation. 

Data Collection 

We undertook a data collection during which the 

participants in our study agreedto provide a 

continuous record of their smartphone use over an 

extended period oftime, in the form of operating 

system events (e.g. app invoked, phone number 

dialed,etc). To do this we implemented an Android 

app that logs each event, together withits date/time 

and the phone’s location (if GPS is enabled).HELPR: 

A Framework to Break the Barrier across Domains in 

Spoken Dialog Systems 

 
Initial analysis of the data indicated that phone usage 

could be segmented intoepisodes consisting of 

interaction events closely spaced in time. In our pilot 

data, wefound 3 mins of inactivity could be used to 

group events. Although this parameterappeared to 

vary across users, we used a single value for 

simplicity. Participantswere asked to upload their log 

on a daily basis. A privacy step allowed them 

todelete episodes that they might not wish to 

share.Due to multi-tasking, episodes might consist of 

multiple activities, each correspondingto a specific 

intent. For example one might be communicating 

with a friendbut at the same time playing a game or 

surfing the web. We invited participants toour lab on 

a regular basis (about once a week) to annotate their 

submitted logs todecouple multiple tasks in the same 

episodes and also describe the nature (intent) ofthe 

tasks (see details below). Note that some activities 

might also span episodes (forexample making plans 

with others); we did not examine these 

 

Smartphone Data Annotation 

Participants were presented with episodes from their 

log and asked to group eventsinto sequences 

corresponding to individual activities [13] (which we 

will also referto as tasks). Meta-information such as 

date, time, and street location, was shownto aid 

recall. Participants were asked to produce two types 

of annotation, using theBrat server-based tool [23]: 1) 

Task Structure: link applications that served a 

commongoal/intention; 2) Task Description: type in a 

brief description of the goal orintention of the task. 

For example, in Fig 1, the user first linked two apps 

(one about camera and anotherabout text message) 

together since they were used for the goal of sharing 

aphoto, and wrote a description “took a pic of ”. 

Some of the task descriptionswere quite detailed and 

provided the actual app sequence executed (see 

example inFig 1). However, others were quite 

abstract, such as “look up math problems” 

or“schedule a study session”. In this paper, we took 

task descriptions as transcribedintent-embedded user 

utterances since these descriptions are usually 

abstract. Weused these descriptions as data for our 

intention understanding models 

 

 



Interactive Dialog Task 

We also asked users to talk to aWizard-of-Oz dialog 

system to reproduce (“reenact”)their multi-domain 

tasks using speech, instead of the GUI, in a controlled 

laboratoryenvironment. The users were shown 1) 

apps used; 2) task description they providedearlier; 3) 

meta data such as time, location to help them recall 

the task (see left partin Fig 2). The participants were 

not required to follow the order of the 

applicationsused on the smartphones. Other than for 

remaining on-task, we did not constrainexpression. 

The wizard (21-year-old male native English 

speaker) was instructed torespond directly to a 

participant’s goal-directed requests and to not accept 

out-ofdomaininputs. An example of a transcribed 

dialog is shown in Fig 2.This allowed us to create 

parallel corpora1 of how people would use 

multipleapps to achieve a goal via both smartphone 

(touch screen) and language. We recruited14 

participants and collected 533 parallel interactions, of 

which 455 involvemultiple user turns (see Table 1). 

 

Methodology 

For an agent to interact with users at the level of 

intention, it should 1) understandan intention 

expressed by speech; and 2) be able to convey its 

understanding of theintention via natural language. 

For example, once the user says “I’d like to plana 

farewell party for my lab-mate”, the agent needs to 

know the intention behindthis spoken input as well as 

be able to assist user to find a restaurant (YELP) 

andschedule time with other lab-mates 

(MESSENGER). On the other hand, the agentmay 

reveal its inner state of understanding to the user, 

especially in clarificationprocess. For instance, it may 

say “I think we are going to plan an evening 

event,right?” Channel-maintenance with such verbal 

cues (either implicit or explicit) ishelpful in 

conversation [2].We first describe modeling intention 

understanding, thendescribe the process by which the 

agent can verbally convey its inner state 

 

Models for Intention Understanding 

What is user intention? We consider two possibilities. 

Observed interactions in theintention semantic space 

may be clustered into KC groups, each representing a 

specificintention. We refer to this as the static 

intention. On the other hand, we canalso define 

dynamic intention, which is a collection of local 

neighbors (seen interactions)of the input speech. See 

Fig 3 as an example. In the static intention setting,the 

agent is aware of the existence of KC intentions and 

their semantics prior to invocation.However, in the 

dynamic setting, intention is implicitly defined by the 

KNnearest neighbors during execution. In both cases, 

a realization process using themembers of the 

recognizedintention set maps the user utterance into a 

sequence/setof apps to support the user activity.We 

anticipate two major differences between statically 

and dynamically basedintentions. First, the static 

approach can use potentially richer information than 

justintention-embedded utterances when discovering 

basic intentions — it could usepost-initiate features 

such as apps launched or user utterances in the 

spoken dialog.Ideally, this may yield a better 

semantic space to categorize seen interactions. 

However, during execution, theinput feature is the 

same as in the dynamic approach,i.e., task 

description. Second, the static approach has hard 

boundaries between intentions.Instances close to the 

boundaries may not be well characterized by 

theircluster membersIn both cases the agent will need 

to map an intention-embedded utterance intosteps 

(i.e., sequence of apps/domains). Several techniques 

are available. We cancombine the individual app 

sequences of the set members into a single app 

sequencethat represents a common way of surfacing 

the intention (denoted as REPSEQ). Alternately,we 

can use a classifier that assigns multiple labels (apps 

ids) to the input(denoted as MULTLAB). Compared 

with the MULTLAB strategy, the advantage 

ofREPSEQ is that it can preserve the order of the app 

sequence. However, once theintention is classified, 

the representative app sequence will always be the 

same, regardlessof variations in the input. This could 

be a potential problem for staticallybased intentions. 

Arguably, during this process, we could weight each 

set memberby its closeness to the input; we did not 

investigate this possibility. To evaluate, wecompare 

the set of apps predicted by our realization model 

with the actual appslaunched by the user and 

compute an F1 score2. 

 

There are two types of users—ones for which 

historical data are available, and theothers. New users 

or users with privacy concerns will not have 

sufficient data. Thus,a generic model trained from 

large user community can be used instead of 

personalizedmodel. We expect that a sufficiently 

well-trained generic model can providereasonable 



performance; as history is accumulated performance 

will improve. 

 

The building of intention understanding models may 

be impacted by intra- andinter-user inconsistency in 

the language/apps. We may encounter the problem 

ofvocabulary-mismatch [13, 22], where interactions 

related with the same intentionhave non-overlapping 

1) spoken terms (words), even caused by minor 

differencessuch asmisspellings, morphologies, etc; 2) 

apps, e.g., people may use different apps—

MESSENGER or EMAIL with essentially similar 

functionality. Below we describetwo techniques to 

overcome potential language- and app-mismatch 

Language Mismatch 

We can consider a user’s input utterances (e.g., 

“schedule a meeting”) as a query tothe intention 

model. To manage language inconsistency, we used a 

two-phase process— 

1) text normalization where only verbs and nouns in 

the query are preservedand further lemmatized (e.g., 

“took”!“take”) 

2) query enrichment (QryEn) whichexpands the 

query by incorporating words related to it 

semantically. QryEn can reducethe likelihood of 

seeing sparse input feature vector du to out-of-

vocabulary [24]words. In this work, we used 

word2vec [17] with gensim3 toolkit on the pre-

trainedGoogleNews word2vec4 model.  

The proposed QryEn algorithm is described in Al- 

 

 

 

App Mismatch 

When a generic model is used, recommended apps 

may not match the apps availableon a specific user’s 

device. For example, the recommended app, 

BROWSER shouldbe converted to CHROME if that 

is the only (or preferred) app in this user’s phonethat 

can browse the Internet. Therefore, similarity metrics 

among apps are needed. 

 

There are several ways to compute app similarity 

(AppSim). First, based on theedit distance between 

app (package) names, for example com.lge.music is 

similarto com.sec.android.app.music since both 

contains the string “music”. Second,we can project an 

app to a vector space. Ideally, apps with similar 

functionalitieswill appear close to each other. 

Possible resources to use are 1) app descriptions 

inapp stores; 2) language associated with each app 

when users verbally command theapp (see example 

in Fig 2). Third, app-store category may indicate 

functionalitywisesimilarity. However, we found 

Google Play category too coarse. In this work,we 

used the first method with 16 fillers (e.g., ”android”, 

”com”, ”htc”) removedfrom package names. 

Examples are shown in Table 2.We found this simple 

methodsignificantly improved system performance 

(described later). 

 

Conveying Intention Understanding 

IAs may need to communicate with the user in 

language cast at the level of intention,especially as 

part of a clarification process. For example, the IA 

may launch a shortsub-dialog by saying “are you 

trying to share a picture?” This involves a 

template(“are you trying to ?”) and some content 

(“share a picture”). Instead of echoingcontent directly 

extracted from the user’s current input, we abstract 

the semantics ofsimilar previous interactions to 

provide language material indicating that the 

agent(though a paraphrase) indeed understands the 

user’s intention 

Study 

Intention Interpretation and Realization 

To evaluate intention modeling, we focus on three 

comparisons: 1) intention:static vs. dynamic models; 

2) source: personalized vs. generic setups; 3) 

method:REPSEQ vs.MULTLAB realization 

strategies.We used the chronologically first 70%of 

each user’s data for training the personalized model, 

in principle mirroring actualdata accumulation. The 

remaining 13 users’ first 70% data was combined to 

train thegeneric model. The number of intentions KC 

for the static intention model and thenumber of 



nearest neighbors KN for the dynamic model can be 

varied. We adaptedKC using gap statistics [26], an 

unsupervised algorithm, to select the optimal KCfrom 

1 to 10 before KMeans. KN was set to the square root 

of the number of trainingexamples [5]. For REPSEQ 

we used ROVER to collapse multiple app 

sequencesinto one [6]. For MULTLAB, we used 

SVM with linear kernel. 

 

We show system performance in Table 3. This 

prediction task is difficult since onaverage each user 

has 19 unique apps and 25 different sequences of 

apps in our datacollection. The upper part 

corresponds to static intention model and the lower 

part todynamic intention. Within either approach, 

different intention realization strategies(QryEn and 

AppSim) and their combination are also shown. We 

performed a balancedANOVA test of F1 score on the 

factors mentioned above: intention, sourceand 

method. The test indicates that the performance 

differs significantly (p<0:05).As noted earlier, the 

static model has the flexibility to incorporate richer 

information 

(post-initiate features) when used to discover the 

basic KC intentions. As showin Table 3, adding more 

post-initiate information (denoted with ? and †) 

improvepersonalized models since users have 

behavioral patterns. However, it does not 

necessarilimprove generic models, mainly due to the 

inter-user difference in language 

and apps. 

But we do not observe superior performance for the 

static model over the dynamicone, even when richer 

information incorporated (? and †) . For 

REPSEQstrategy, the dynamic model is much better 

than the static one. It is possible thatREPSEQ is 

sensitive to the selection of similar interactions. 

Arguably, an input mayfall close to the intention 

boundary in a static setting, which indeed is closer to 

someinteractions on the other side of the boundary as 

opposed to the ones within the same 
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Domains in Spoken Dialog Systems 9Table 3: 

Weighted average F1 score (%) on test set across 14 

participants, using bag-of-words.Average KC in 

static condition is 7:0_1:0 for generic model, and 

7:1_1:6 for personalized model.The static condition 

was run 10 times and the average is reported. KN in 

the dynamic conditionis 18:5_0:4 for the generic 

model and 4:9_1:4 for the personalized model. ? 

indicates bothdescriptions and user utterances are 

used in clustering and † indicates apps are used as 

well. 

 

intention cluster. On the other hand, the MULTLAB 

approach shows relatively consistentperformance in 

both static and dynamic settings, indicating 

robustness andself-adaptability with respect to the 

choice of interactions of similar intention 

In Table 3, the fact that QryEn improves the F1 score 

in all conditions indicatesthat semantic similarity 

among words can effectively address the 

languagemismatchproblem. On the other hand, 

although AppSim has no effect on the 

personalizedmodel, it addresses the app-mismatch 

issue in generic models intuitively(p < 0:05 when 

comparing with the baseline in an balanced ANOVA 

on additionaltwo factors: intention, method). 

Combining QryEn and AppSim methods 

together(denoted as “+QryEn+AppSim”) consistently 

achieves the highest F1 score. As weexpected, 

generic intention model is consistently inferior to the 

personalized model. 

Intention Representation in Natural Language 

It should be possible to automatically abstract the 

semantics of the recognized intentioncluster (or 

neighbors): Text summarization may be used to 

generate high-leveldescription of the intention 

cluster. Keyphrase extraction provides 

anotheralternative  Note that, even if the automatic 

generation of semantic summarizationis not precise, 

it may still be sufficiently meaningful in context 

In this study, we used the Rapid Automatic Keyword 

Extraction (RAKE5) algorithm[1], an unsupervised, 

language-independent and domain-independent 

extractionmethod. This method has been reported to 

outperform other unsupervised 

 

methods such as TextRank [16] and [9] in both 

precision and F score. In RAKE,we required that 1) 

each word have 3 or more characters; 2) each phrase 

have atmost 3 words; and that 3) each key word 

appear in the text at least once. We didnot investigate 

tuning these parameters. We use 3 individual 



resources and 2 combinations,reflecting constraints 

on the availability of different contexts in real-

life.The three individual resources are manual 

transcription of user utterances in theirdialogs 

(MANUAL) and their ASR transcriptions (ASR) and 

high-level task descriptions(DESC). The average 

number of key phrases generated by each resource 

(or 

their combination) is shown in Table 4. 

We selected 6 users to first review their own clusters, 

by showing them all clustermembers with 1) apps 

used in the member interaction; 2) dialog reproduced; 

3)meta-data such as time, date, address, etc. We let 

them judge whether each individualphrase generated 

by the system summarized all the activities in the 

cluster (binaryjudgement). We used three 

Information Retrieval (IR) metrics to evaluate 

performanceamong different resources — 1) 

Precision at position K (P@K); 2) MeanAverage 

Precision6 at position K (MAP@K); 3) Mean 

Reciprocal Rank (MRR). Thefirst two metrics 

emphasize on the quality of the top K phrases, MRR 

focuses on apractical goal — “how deep the user has 

to go down a ranked list to find one usefulphrase?”. 

Average MRR is 0.64, meaning that the user will find 

an acceptabledescriptive phrase in the top 2 items 

shown; an ANOVA did not show 

significantdifferences between resources. With more 

sensitive MAP@K and P@K metrics,DESC+ASR 

and DESC+MANUAL do best. The improvement 

becomes significantas K increases: having a user-

generated task description is very useful.Participants 

also were asked to suggest carrier phrases that the 

agent could useto refer to activities; we found these 

to be unremarkable. Among the 23 phrasescollected, 

“do you want to ” and “would you like to ” were the 

most popular. 

 

To conclude, if the IA can observe a user’s speech 

commands or elicit descriptionsfrom the user (ideally 

both), it can generate understandable activity 

referencesand might avoid less efficient interactions 

(e.g. lists). 

Conclusion and Future Work 

We present a framework, HELPR, that is used to 

learn to understand a user’s intentionfrom a high-

level description of goals (e.g., “go out with friends”) 

and tolink these to specific functionality available on 

a smart device. The proposed agentsolicits 

descriptions from the user. We found that the 

language used to describe activitiesis sufficient to 

group together similar activities. Query enrichment 

and appsimilarity help with language- and domain-

mismatch problems, especially when a generic model 

is used.Wedemonstrated that an agent could use data 

from large usercommunity while also learning user-

specific modelsThe long-term goal of our work is to 

create agents that observe recurring humanactivities, 

understand theunderlying intentions and support the 

task through spokenlanguage interaction. The agent 

must communicate onthe level of intentions 

insteadof, or in addition to, individual apps. And it 

needs to manage the context of theactivity so that its 

state can be shared between different apps.The value 

of such an agent is that it would operate on a level 

higher than providedby app-specific interfaces. It 

would moreover allow the user to effectively build 

theirown applications by composing the functionality 

in existing apps. We have shownthat it is possible to 

infer user intentions; the next challenge is to capture 

meaningfulcontext and actively apply it across 

different apps. 
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