

ISSN2454-9940www.ijsem.org

 Vol 12, Issue.3 July 2021

HELPR: A Cross-Domain Approach to Improving Spoken-

Dialog Systems

M.RAMA MOHAN REDDY
1
,M.SREEHARI

2
,

Abstract
People usually interact with intelligent agents (IAs) when they have certaingoals to be accomplished. Sometimes these goals are complex and

may requireinteracting with multiple applications, which may focus on different domains. CurrentIAs may be of limited use in such cases and

the user needs to directly managethe task at hand. An ideal personal agent would be able to learn, over time, thesetasks spanning different

resources. In this paper, we address the problem of crossdomaintask assistance in the context of spoken dialog systems, and describe

ourapproach about discovering such tasks and how IAs learn to talk to users about thetask being carried out. Specifically we investigate how

to learn user activity patternsin a smartphone environment that span multiple apps and how to incorporate user’sdescriptions about their

high-level intents into human-agent interaction

Key words: cross-domain; user intention; spoken dialog systems

Introduction

Smart devices, such as smartphones or TVs, allow

users to achieve their goals (intentions)through verbal

and non-verbal communication. The intention

sometimescan be fulfilled in one single domain (i.e.,

an app). However, the user’s intentionis possible to

span multiple domains and requires information

coordination amongthese domains. A human user,

with the global context at hand, can well-organize

thefunctionality provided by apps and coordinate

information efficiently. On the other hand, although

intelligentagents can be configured by developers to

passively support(limited) types of cross-domain

interactions, they are not capable of

activelymanaging apps to satisfy a user’s potentially

complex intentions, because they donot consider the

repeated execution of activities in pursuit of user

intentionsCurrently, most human-machine

interactions are carried out via touch-screen.Although

the vocabularies of recognizable gestures have been

expanded during thepast decade [8], interactive

expressions are still restricted due to the limit of

gesturesand displays. This limit may affect usability,

especially for certain populations, suchas older users

or users with visual disabilities. By contrast, spoken

language can effectivelyconvey the user’s high-level

and complex intentions to a device. However,the

challenges are: 1) understanding both at the level of

individual apps and at thelevel of activities that span

apps; and 2) communicating a task-level

functionalitybetween user and agent. Our previous

work focused on predicting user’s follow-upaction at

app level [25] or understanding the current app-level

intention [4]. Thispaper mainly addresses the high-

level intention-embedded language

understanding.For example, our proposed model

understands that “plan a dinner with Alex” is

composedof several domains such as YELP,

OPENTABLE and MESSENGER.

ASSOCIATE PROFESSOR
1
, ASSISTANT PROFESSOR

2
,

DEPARTMENT OF ECE

PBR VISVODAYA INSTITUTE OF TECHNOLOGY AND SCIENCE::KAVALI

We alsoenable the system to verbally communicate

its understanding of users intentions, inorder to

maintain a transparent communication channelMulti-

domain dialog systems have been studied in the past

[14, 19], where aclassic architecture contains

multiple models developed independently for

differentdomains and allows corresponding apps to

handle user requests [11, 18, 3, 4]. Givena spoken

utterance, a domain detector selects 1) a single

domain [10, 18, 25, 4] or2) several domains based on

the functionality in the user request [20, 21].

However,neither of the two approaches considered

the user intention behind the multi-domaininteraction

(i.e., why the user needs this set of domains). Our

method bridges thelow-level surface forms in cross-

domain interactions and the high-level intention inthe

user’s mind to enable systems to support intention

realization. Moreover, consideringa personal

assistant’s perspective, we compare personalized

models withgeneric ones based on personal data

availability.The rest of the paper is organized as

follows: we first briefly describe a datacollection

process to gather user’s real-life multi-domain tasks.

Then we discuss themethodology to discover,

recognized and realize user intentions. Two user

studiesare described later as end-to-end and

component-wise evaluation.

Data Collection

We undertook a data collection during which the

participants in our study agreedto provide a

continuous record of their smartphone use over an

extended period oftime, in the form of operating

system events (e.g. app invoked, phone number

dialed,etc). To do this we implemented an Android

app that logs each event, together withits date/time

and the phone’s location (if GPS is enabled).HELPR:

A Framework to Break the Barrier across Domains in

Spoken Dialog Systems

Initial analysis of the data indicated that phone usage

could be segmented intoepisodes consisting of

interaction events closely spaced in time. In our pilot

data, wefound 3 mins of inactivity could be used to

group events. Although this parameterappeared to

vary across users, we used a single value for

simplicity. Participantswere asked to upload their log

on a daily basis. A privacy step allowed them

todelete episodes that they might not wish to

share.Due to multi-tasking, episodes might consist of

multiple activities, each correspondingto a specific

intent. For example one might be communicating

with a friendbut at the same time playing a game or

surfing the web. We invited participants toour lab on

a regular basis (about once a week) to annotate their

submitted logs todecouple multiple tasks in the same

episodes and also describe the nature (intent) ofthe

tasks (see details below). Note that some activities

might also span episodes (forexample making plans

with others); we did not examine these

Smartphone Data Annotation

Participants were presented with episodes from their

log and asked to group eventsinto sequences

corresponding to individual activities [13] (which we

will also referto as tasks). Meta-information such as

date, time, and street location, was shownto aid

recall. Participants were asked to produce two types

of annotation, using theBrat server-based tool [23]: 1)

Task Structure: link applications that served a

commongoal/intention; 2) Task Description: type in a

brief description of the goal orintention of the task.

For example, in Fig 1, the user first linked two apps

(one about camera and anotherabout text message)

together since they were used for the goal of sharing

aphoto, and wrote a description “took a pic of ”.

Some of the task descriptionswere quite detailed and

provided the actual app sequence executed (see

example inFig 1). However, others were quite

abstract, such as “look up math problems”

or“schedule a study session”. In this paper, we took

task descriptions as transcribedintent-embedded user

utterances since these descriptions are usually

abstract. Weused these descriptions as data for our

intention understanding models

Interactive Dialog Task

We also asked users to talk to aWizard-of-Oz dialog

system to reproduce (“reenact”)their multi-domain

tasks using speech, instead of the GUI, in a controlled

laboratoryenvironment. The users were shown 1)

apps used; 2) task description they providedearlier; 3)

meta data such as time, location to help them recall

the task (see left partin Fig 2). The participants were

not required to follow the order of the

applicationsused on the smartphones. Other than for

remaining on-task, we did not constrainexpression.

The wizard (21-year-old male native English

speaker) was instructed torespond directly to a

participant’s goal-directed requests and to not accept

out-ofdomaininputs. An example of a transcribed

dialog is shown in Fig 2.This allowed us to create

parallel corpora1 of how people would use

multipleapps to achieve a goal via both smartphone

(touch screen) and language. We recruited14

participants and collected 533 parallel interactions, of

which 455 involvemultiple user turns (see Table 1).

Methodology

For an agent to interact with users at the level of

intention, it should 1) understandan intention

expressed by speech; and 2) be able to convey its

understanding of theintention via natural language.

For example, once the user says “I’d like to plana

farewell party for my lab-mate”, the agent needs to

know the intention behindthis spoken input as well as

be able to assist user to find a restaurant (YELP)

andschedule time with other lab-mates

(MESSENGER). On the other hand, the agentmay

reveal its inner state of understanding to the user,

especially in clarificationprocess. For instance, it may

say “I think we are going to plan an evening

event,right?” Channel-maintenance with such verbal

cues (either implicit or explicit) ishelpful in

conversation [2].We first describe modeling intention

understanding, thendescribe the process by which the

agent can verbally convey its inner state

Models for Intention Understanding

What is user intention? We consider two possibilities.

Observed interactions in theintention semantic space

may be clustered into KC groups, each representing a

specificintention. We refer to this as the static

intention. On the other hand, we canalso define

dynamic intention, which is a collection of local

neighbors (seen interactions)of the input speech. See

Fig 3 as an example. In the static intention setting,the

agent is aware of the existence of KC intentions and

their semantics prior to invocation.However, in the

dynamic setting, intention is implicitly defined by the

KNnearest neighbors during execution. In both cases,

a realization process using themembers of the

recognizedintention set maps the user utterance into a

sequence/setof apps to support the user activity.We

anticipate two major differences between statically

and dynamically basedintentions. First, the static

approach can use potentially richer information than

justintention-embedded utterances when discovering

basic intentions — it could usepost-initiate features

such as apps launched or user utterances in the

spoken dialog.Ideally, this may yield a better

semantic space to categorize seen interactions.

However, during execution, theinput feature is the

same as in the dynamic approach,i.e., task

description. Second, the static approach has hard

boundaries between intentions.Instances close to the

boundaries may not be well characterized by

theircluster membersIn both cases the agent will need

to map an intention-embedded utterance intosteps

(i.e., sequence of apps/domains). Several techniques

are available. We cancombine the individual app

sequences of the set members into a single app

sequencethat represents a common way of surfacing

the intention (denoted as REPSEQ). Alternately,we

can use a classifier that assigns multiple labels (apps

ids) to the input(denoted as MULTLAB). Compared

with the MULTLAB strategy, the advantage

ofREPSEQ is that it can preserve the order of the app

sequence. However, once theintention is classified,

the representative app sequence will always be the

same, regardlessof variations in the input. This could

be a potential problem for staticallybased intentions.

Arguably, during this process, we could weight each

set memberby its closeness to the input; we did not

investigate this possibility. To evaluate, wecompare

the set of apps predicted by our realization model

with the actual appslaunched by the user and

compute an F1 score2.

There are two types of users—ones for which

historical data are available, and theothers. New users

or users with privacy concerns will not have

sufficient data. Thus,a generic model trained from

large user community can be used instead of

personalizedmodel. We expect that a sufficiently

well-trained generic model can providereasonable

performance; as history is accumulated performance

will improve.

The building of intention understanding models may

be impacted by intra- andinter-user inconsistency in

the language/apps. We may encounter the problem

ofvocabulary-mismatch [13, 22], where interactions

related with the same intentionhave non-overlapping

1) spoken terms (words), even caused by minor

differencessuch asmisspellings, morphologies, etc; 2)

apps, e.g., people may use different apps—

MESSENGER or EMAIL with essentially similar

functionality. Below we describetwo techniques to

overcome potential language- and app-mismatch

Language Mismatch

We can consider a user’s input utterances (e.g.,

“schedule a meeting”) as a query tothe intention

model. To manage language inconsistency, we used a

two-phase process—

1) text normalization where only verbs and nouns in

the query are preservedand further lemmatized (e.g.,

“took”!“take”)

2) query enrichment (QryEn) whichexpands the

query by incorporating words related to it

semantically. QryEn can reducethe likelihood of

seeing sparse input feature vector du to out-of-

vocabulary [24]words. In this work, we used

word2vec [17] with gensim3 toolkit on the pre-

trainedGoogleNews word2vec4 model.

The proposed QryEn algorithm is described in Al-

App Mismatch

When a generic model is used, recommended apps

may not match the apps availableon a specific user’s

device. For example, the recommended app,

BROWSER shouldbe converted to CHROME if that

is the only (or preferred) app in this user’s phonethat

can browse the Internet. Therefore, similarity metrics

among apps are needed.

There are several ways to compute app similarity

(AppSim). First, based on theedit distance between

app (package) names, for example com.lge.music is

similarto com.sec.android.app.music since both

contains the string “music”. Second,we can project an

app to a vector space. Ideally, apps with similar

functionalitieswill appear close to each other.

Possible resources to use are 1) app descriptions

inapp stores; 2) language associated with each app

when users verbally command theapp (see example

in Fig 2). Third, app-store category may indicate

functionalitywisesimilarity. However, we found

Google Play category too coarse. In this work,we

used the first method with 16 fillers (e.g., ”android”,

”com”, ”htc”) removedfrom package names.

Examples are shown in Table 2.We found this simple

methodsignificantly improved system performance

(described later).

Conveying Intention Understanding

IAs may need to communicate with the user in

language cast at the level of intention,especially as

part of a clarification process. For example, the IA

may launch a shortsub-dialog by saying “are you

trying to share a picture?” This involves a

template(“are you trying to ?”) and some content

(“share a picture”). Instead of echoingcontent directly

extracted from the user’s current input, we abstract

the semantics ofsimilar previous interactions to

provide language material indicating that the

agent(though a paraphrase) indeed understands the

user’s intention

Study

Intention Interpretation and Realization

To evaluate intention modeling, we focus on three

comparisons: 1) intention:static vs. dynamic models;

2) source: personalized vs. generic setups; 3)

method:REPSEQ vs.MULTLAB realization

strategies.We used the chronologically first 70%of

each user’s data for training the personalized model,

in principle mirroring actualdata accumulation. The

remaining 13 users’ first 70% data was combined to

train thegeneric model. The number of intentions KC

for the static intention model and thenumber of

nearest neighbors KN for the dynamic model can be

varied. We adaptedKC using gap statistics [26], an

unsupervised algorithm, to select the optimal KCfrom

1 to 10 before KMeans. KN was set to the square root

of the number of trainingexamples [5]. For REPSEQ

we used ROVER to collapse multiple app

sequencesinto one [6]. For MULTLAB, we used

SVM with linear kernel.

We show system performance in Table 3. This

prediction task is difficult since onaverage each user

has 19 unique apps and 25 different sequences of

apps in our datacollection. The upper part

corresponds to static intention model and the lower

part todynamic intention. Within either approach,

different intention realization strategies(QryEn and

AppSim) and their combination are also shown. We

performed a balancedANOVA test of F1 score on the

factors mentioned above: intention, sourceand

method. The test indicates that the performance

differs significantly (p<0:05).As noted earlier, the

static model has the flexibility to incorporate richer

information

(post-initiate features) when used to discover the

basic KC intentions. As showin Table 3, adding more

post-initiate information (denoted with ? and †)

improvepersonalized models since users have

behavioral patterns. However, it does not

necessarilimprove generic models, mainly due to the

inter-user difference in language

and apps.

But we do not observe superior performance for the

static model over the dynamicone, even when richer

information incorporated (? and †) . For

REPSEQstrategy, the dynamic model is much better

than the static one. It is possible thatREPSEQ is

sensitive to the selection of similar interactions.

Arguably, an input mayfall close to the intention

boundary in a static setting, which indeed is closer to

someinteractions on the other side of the boundary as

opposed to the ones within the same

HELPR: A Framework to Break the Barrier across

Domains in Spoken Dialog Systems 9Table 3:

Weighted average F1 score (%) on test set across 14

participants, using bag-of-words.Average KC in

static condition is 7:0_1:0 for generic model, and

7:1_1:6 for personalized model.The static condition

was run 10 times and the average is reported. KN in

the dynamic conditionis 18:5_0:4 for the generic

model and 4:9_1:4 for the personalized model. ?

indicates bothdescriptions and user utterances are

used in clustering and † indicates apps are used as

well.

intention cluster. On the other hand, the MULTLAB

approach shows relatively consistentperformance in

both static and dynamic settings, indicating

robustness andself-adaptability with respect to the

choice of interactions of similar intention

In Table 3, the fact that QryEn improves the F1 score

in all conditions indicatesthat semantic similarity

among words can effectively address the

languagemismatchproblem. On the other hand,

although AppSim has no effect on the

personalizedmodel, it addresses the app-mismatch

issue in generic models intuitively(p < 0:05 when

comparing with the baseline in an balanced ANOVA

on additionaltwo factors: intention, method).

Combining QryEn and AppSim methods

together(denoted as “+QryEn+AppSim”) consistently

achieves the highest F1 score. As weexpected,

generic intention model is consistently inferior to the

personalized model.

Intention Representation in Natural Language

It should be possible to automatically abstract the

semantics of the recognized intentioncluster (or

neighbors): Text summarization may be used to

generate high-leveldescription of the intention

cluster. Keyphrase extraction provides

anotheralternative Note that, even if the automatic

generation of semantic summarizationis not precise,

it may still be sufficiently meaningful in context

In this study, we used the Rapid Automatic Keyword

Extraction (RAKE5) algorithm[1], an unsupervised,

language-independent and domain-independent

extractionmethod. This method has been reported to

outperform other unsupervised

methods such as TextRank [16] and [9] in both

precision and F score. In RAKE,we required that 1)

each word have 3 or more characters; 2) each phrase

have atmost 3 words; and that 3) each key word

appear in the text at least once. We didnot investigate

tuning these parameters. We use 3 individual

resources and 2 combinations,reflecting constraints

on the availability of different contexts in real-

life.The three individual resources are manual

transcription of user utterances in theirdialogs

(MANUAL) and their ASR transcriptions (ASR) and

high-level task descriptions(DESC). The average

number of key phrases generated by each resource

(or

their combination) is shown in Table 4.

We selected 6 users to first review their own clusters,

by showing them all clustermembers with 1) apps

used in the member interaction; 2) dialog reproduced;

3)meta-data such as time, date, address, etc. We let

them judge whether each individualphrase generated

by the system summarized all the activities in the

cluster (binaryjudgement). We used three

Information Retrieval (IR) metrics to evaluate

performanceamong different resources — 1)

Precision at position K (P@K); 2) MeanAverage

Precision6 at position K (MAP@K); 3) Mean

Reciprocal Rank (MRR). Thefirst two metrics

emphasize on the quality of the top K phrases, MRR

focuses on apractical goal — “how deep the user has

to go down a ranked list to find one usefulphrase?”.

Average MRR is 0.64, meaning that the user will find

an acceptabledescriptive phrase in the top 2 items

shown; an ANOVA did not show

significantdifferences between resources. With more

sensitive MAP@K and P@K metrics,DESC+ASR

and DESC+MANUAL do best. The improvement

becomes significantas K increases: having a user-

generated task description is very useful.Participants

also were asked to suggest carrier phrases that the

agent could useto refer to activities; we found these

to be unremarkable. Among the 23 phrasescollected,

“do you want to ” and “would you like to ” were the

most popular.

To conclude, if the IA can observe a user’s speech

commands or elicit descriptionsfrom the user (ideally

both), it can generate understandable activity

referencesand might avoid less efficient interactions

(e.g. lists).

Conclusion and Future Work

We present a framework, HELPR, that is used to

learn to understand a user’s intentionfrom a high-

level description of goals (e.g., “go out with friends”)

and tolink these to specific functionality available on

a smart device. The proposed agentsolicits

descriptions from the user. We found that the

language used to describe activitiesis sufficient to

group together similar activities. Query enrichment

and appsimilarity help with language- and domain-

mismatch problems, especially when a generic model

is used.Wedemonstrated that an agent could use data

from large usercommunity while also learning user-

specific modelsThe long-term goal of our work is to

create agents that observe recurring humanactivities,

understand theunderlying intentions and support the

task through spokenlanguage interaction. The agent

must communicate onthe level of intentions

insteadof, or in addition to, individual apps. And it

needs to manage the context of theactivity so that its

state can be shared between different apps.The value

of such an agent is that it would operate on a level

higher than providedby app-specific interfaces. It

would moreover allow the user to effectively build

theirown applications by composing the functionality

in existing apps. We have shownthat it is possible to

infer user intentions; the next challenge is to capture

meaningfulcontext and actively apply it across

different apps.

Acknowledgement

This work was supported in part by YAHOO!

InMind, and by the General MotorsAdvanced

Technical Center. We thank Zhenhao Hua for

implementing the loggerapplication, and

YulianTamres-Rudnicky and Arnab Dash for

collecting data.

References

1. Michael W. Berry and Jacob Kogan. 2010. Text mining:

applications and theory.

2. Dan Bohus and Alexander I Rudnicky. 2005. Sorry, I didn’t

catch that!-An investigationof non-understanding errors and

recovery strategies. In SIGdial Workshop on Discourse

andDialogue (SIGDIAL).

3. Yun-Nung Chen and Alexander I. Rudnicky. 2014.

Dynamically supporting unexplored domainsin conversational

interactions by enriching semantics with neural word

embeddings. InProceedings of 2014 IEEE Spoken Language

Technology Workshop (SLT). IEEE, 590–595.

4. Yun-Nung Chen, Ming Sun, and Alexander I. Rudnicky. 2015.

Leveraging Behavioral Patternsof Mobile Applications for

Personalized Spoken Language Understanding. In Proceedings

of2015 International Conference on Multimodal Interaction

(ICMI).

5. Richard Duda, Peter Hart, and David Stork. 2012. Pattern

Classification. John Wiley andSons.

6. Jonathan G Fiscus. 1997. A Post-Processing System to Yield

ReducedWord Error Rates: Recognizeroutput voting error

reduction (ROVER). In Proceedings of Automatic Speech

Recognitionand Understanding Workshop (ASRU). 347–352.

7. Kavita Ganesan, ChengxiangZhai, and Jiawei Han. 2010.

Opinosis: a graph-based approachto abstractive summarization

of highly redundant opinions. In Proceedings of the 23rd

internationalconference on computational linguistics (COLING).

ACL, 340–348.

8. Chris Harrison, Robert Xiao, Julia Schwarz, and Scott E.

Hudson. 2014. TouchTools: leveragingfamiliarity and skill with

physical tools to augmenttouch interaction. In Proceedings ofthe

SIGCHI Conference on Human Factors in Computing Systems.

2913–2916.

9. Anette Hulth. 2003. Improved automatic keyword extraction

given more linguistic knowledge.In Proceedings of the 2003

conference on Empirical methods in natural language

processing(EMNLP). ACL, 216–223.

10. Qi Li, Gokhan Tur, DilekHakkani-Tur, Xiang Li, Tim Paek,

AselaGunawardana, and ChrisQuirk. 2014. Distributed open-

domain conversational understanding framework with domain

