

 ISSN2454-9940www.ijsem.org

 Vol 11, Issuse.4 Dec 2020

Gene name recognition with systematic feature assessment
Mr.A Srinivasan , Mrs.B Mounika , Mr.D Sanjeeva Reddy

Abstract

Task 1A of the Bio Creative assessment required the development of systems that can extract gene and protein names from free-text

utterances. To solve this issue, we use a pattern-based post-processing to recognize phrases and a word classification system based on a

sliding window method with a Support Vector Machine. Whether or whether the categorization approach takes into account factors like

prefixes, suffixes, character n-grams, capitalization patterns, and word order is vital to the system's effectiveness. We provide a method

based on recursive feature elimination, RFE, for comparing the efficacy of various feature sets. We can measure the effect of various

feature sets on the outcomes of the word classification problem by gradually decreasing the number of features utilized by the system.

We may then use this information to develop solutions that are quicker and simpler to comprehend by identifying descriptive

characteristics and gaining insight into the underlying structure of the issue. We find that the SVM is resistant to the use of duplicated

features. When compared to utilizing all of the features, RFE yields a 0.7% performance boost. In addition, employing less than 5% of

the features may provide performance that is just 2.3% worse than this limit.

Introduction

Named entity recognition (NER) problems with

gene and protein names [2] are at the heart of Task

1A of the Bio Creative assessment [1]. Participants

were given a corpus of 10,000 words that included

protein and gene names. We'll abbreviate "gene and

protein" to "gene" for brevity, although these lines

required the development of algorithms to identify

gene and protein names in random text. The

algorithms were evaluated using a dataset of 5,000

unread and untagged texts. The assessment was

stringent, meaning that multi-name (phrase) gene

names like "Drosophila shc gene product" had to be

identified in their entirety, without any missing or

extraneous portions. All of the organizer-provided

statements have already been tokenized, or parsed

into individual words and phrases. The training

corpus also included embedded part-of-speech tags

for easier comprehension. There are several

publications available on the difficulties inherent in

the NER process for gene names in biomedical

literature (for examples, see [3,4]). Multiple names

for genes, abbreviations galore, names that include

numeric and special characters, and ambiguity over

where a sentence ends all result from a lack of

agreed-upon nomenclature standards. The

recognition of multi-word phrases has shown to be

a particularly challenging challenge if rigorous

assessment criteria are used.

Methods

 Our system consists of a two-stage process. To

determine whether or not a given token is part of a

gene name, a Support Vector Machine classifier

[15-17] is taught to make that determination. In

addition, our system activates a series of post-

processing rules that are sensitive to context and

classify specific neighbouring tokens as genes in

order to identify compound nouns [18]. Examples

are represented as vectors in the SVM. Each

dimension in the vector space represents a feature

of an example, and the values of those parameters

are unique to each instance. Each token in both the

training and testing data serves as an example in

our situation. Each instance is either marked as

"positive" (a component of a gene name) or

"negative" (not part of a gene name). Support

Vector Machines (SVMs) are capable of learning a

hyperplane with a discriminating margin between

two classes. Which side of the hyperplane a new

example (from the test corpus) falls on then

determines whether the example is positively or

negatively labelled.

Assistant Professor1,2,3

Department of CSE

Viswam Engineering College (VISM) Madanapalle-517325 Chittoor District, Andhra Pradesh, India

 ISSN2454-9940www.ijsem.org

 Vol 11, Issuse.4 Dec 2020

Connected Tasks

Our methods are used by several of the other

groups in the 2003 Bio Creative assessment. Three

further teams advocate for SVM-based token

classifiers. The effectiveness of such methods

varies considerably. We'll show you the systems

that are most like ours and compare and contrast

how they handle things.

Figure 2Impact of the Recursive Figure 2 e Feature

Elimination Impact of the Recursive Feature

Elimination. Impact of removing 10% of the

features with the lowest weight vctor in each round.

After 30 iterations, with only 4.28% of all features

remaining, the f-measure has dropped only by 2%.

The underlying evaluation method only considers

the recognation of single tokens rather than whole

phrases. The bottom line (65 iterations) shows the

impact of the remaining 0.11% of all features. All

values are evaluated without the post-expansion

step (see text). Dependence of the f-measure on the

number of features

Figure 3 The f-measure's dependence on the feature

count. Precision, recall, and f-measure results for a

range of feature counts. As we start with the whole

feature set, the features with the lowest weight

vector are eliminated using recursive feature

elimination, and our performance is evaluated after

each round.

PosBIOTM-Ner

Song et al. [9] utilize a variant of the BIO-markup

with classes that isolate gene names from adjacent

text. Not only do they classify tokens as being

either inside or outside of a gene name (I/O), but

they also introduce a new category for tokens that

come before the first letter of a compound gene

name (B). In our own system, we solely make use

of I and O. Significantly expanding the feature

space using an edit-distance-based gazetteer search

for tokens and phrases. The edit-distance algorithm

takes into account linguistic shifts. Our method

involves using precise matches of candidate

phrases against a gazetteer that also includes

alternative spellings. Song et al. make an effort to

artificially expand the training sample. Sentences

from the training corpus are recycled by the system

with new gene names inserted. Tokens other than

noun-phrases and determiners are disregarded

entirely on the assumption that all proper nouns are

limited to these constructions. The method's f-

measure drops from 73.8% without the extra

training examples to 66.7% with them, showing

that limiting it to noun-phrases does not boost its

performance. Using fabricated data increases recall

by 1-2% at the expense of a 17% decrease in

accuracy. The primary differences between our

system and PosBIOTM-NER are the usage of BIO-

classes and the invocation of a gazetteer, and

PosBIOTM-NER achieves roughly 1% higher f-

measure, mostly due to the improved accuracy of

its predictions (80% precision at 68.5% recall).

Yam Cha

The method described above is similar to one used

by Matsumura et al. [10], which extends BIO

classes. The approach also makes use of a context

window;however, this has no positive effect on our

system's efficiency. We also tried using various

sized context windows (both symmetrical and

asymmetrical) to see whether they had any effect

on performance, but were ultimately disappointed.

However, keep in mind that our post-processing

stage does employ context in a subtle way. The

Yam Cha gazetteer function makes use of data

from both SWISS-PROT and TrEMBL. Up to an f-

measure of 78.1%, performance is improved by 3

percentage points. Yam Cha also uses the gazetteer

in a different manner than we do, and its entries

come from a different source. Token n-grams are

used to find terms in the gazetteer that are a precise

match. Yam Cha is around 5% more efficient than

our approach, despite not include a name expansion

phase. This comes as a shock since our system's

 ISSN2454-9940www.ijsem.org

 Vol 11, Issuse.4 Dec 2020

performance drops by around 15% when not post-

processed.

Powerline

Ensemble approaches using two HMM and one

SVM classifier are proposed by Zhou et al. [5,6].

The SVM employs a feature set similar to our own.

Instead,then using a single dimension to describe a

candidate token's occurrence in a vocabulary,

Powerline uses a separate dimension for each each

word. Table 3 Orthographic Characteristics The

post-expansion phase's guiding principles. Certain

POS tags are converted to NEWGENE tags

according to the regulations. In the extension of

noun phrases, we leave off 372/222 nouns and add

just 778 specific adjectives. The notation NN*

denotes nouns, proper nouns, and plurals; JJ

denotes adjectives; CD denotes cardinal numbers;

DT denotes determiners; and '/' indicates that the

token is itself a noun.

similar to ours in terms of token representation, but

furthermore include tests for parentheses,

punctuation, and stop words. We don't know the

details of Powerbaseone’s stop word list, but our

own version uses the top 10,000 most frequent

English terms (out of a total of 100, 000). Zhou et

al. differentiate between two types of triggers that

indicate whether or not a token is included in two

distinct word lists. The first group comprises terms

that are often found within gene names, whereas

the second group contains words that are frequently

found in the local context of gene names. Our own

approach calculates a single feature's value based

on its distance from these keywords. The authors

offer an ensemble technique; hence it is unclear

how their system performs in comparison to ours in

terms of prediction accuracy. Similarly, the impact

of various feature sets varies. Despite what some of

the other participants may claim, our prediction

ability is not improved by some of the factors they

find helpful. We've recreated everything that wasn't

in our first system, including ldl, ddd, and DNA

(see Table 1), but these additions don't help us

much. Because of their poor discriminative

strength, practically all of them are eliminated in

early rounds by the recursive feature removal.

Feature classes and feature definitions

We construct a collection of features from the

token and its context for each token in the training

and test corpora. For example, instead of using just

the characteristics "al", "lap", and "ph.", we may

switch to using all character 2-grams. Feature

engineering, therefore, is concerned with

determining which kinds of features are most

useful (for examples, see Table 1). The features are

created using the following categories and their

respective definitions: Invisible token Each token

in the training set is treated as a separate feature. In

cases where they are relevant, the values from tf.idf

are used. It is our goal to train a model that can

easily include novel tokens. One binary feature

("unseen") is included to accomplish this goal; it is

set to 0 if the token is part of the training set and 1

otherwise. Tokens are assumed to be invisible at

random throughout training. This implies that we

don't properly set the tf.idf value for the single

token feature and instead set the "unseen" feature to

1 with a minimal prob ability.

Results

We employed a technique where feature classes

were selected via trial and error for the

BioCreAtIvE evaluation. The outcomes of this

system will be presented initially. Once the

competition was over, we used a more methodical

approach to zero in on the best possible feature set.

Starting with a model that included every possible

feature class, we then iteratively eliminated the

ones with the lowest weights in the SVM-learned

model. In this chapter's second half, the findings

are discussed. We conclude by demonstrating the

results of our post-processing phase, which was the

same for both scenarios. Table 1 lists all

characteristics analysed by both methods, along

with their effect on a default classifier.

Unique functionality packages

 We created many feature classes and tested out

various on/off class use combinations for the Bio

Creative submission. In Table 1, the feature classes

highlighted with a "*" were the ones we submitted.

Simply using the tokens as features provides a

baseline f-measure of 54.1% for the system. The

system reaches, say, 68.2% following the addition

of character 1-, 2-, and 3-grams. When all the bells

and whistles are turned on, performance suffers.

We did this by identifying a subset of surface cues

that gave us the highest attainable f-measure. This

subset covers checks for tokens consisting of a

single or double capital letter, all capital letters, all

lowercase letters, all uppercase letters, special

characters, and numerical combinations. Not all of

these characteristics enhanced performance when

 ISSN2454-9940www.ijsem.org

 Vol 11, Issuse.4 Dec 2020

selected alone, but only in conjunction with others,

maybe because of the connection of feature classes.

For instance, the performance benefits of using

special characters and letter/digit combinations

were seen only when the two were utilized in

tandem.

The competition was split into two categories:

open, where participants could build gazetteers

using any available data, and closed, where

participants could only use the training data given

by the tournament's organizers. Because of the

greater expected influence of gazetteers, this

distinction was made. Contrary to expectations, this

has not materialized. When used with gazetteers

produced from the training data, automatically

constructed gazetteers had a rather little effect.

Performance drops slightly when only tokens are

used as features compared to when the gazetteer

constructed from training data and external sources

(synonym lists for gene names from mouse, yeast,

and fruit fly (all from Biotreat tIvE Task 1B), and

human [12]) are used as features (see Table 1). We

saw a little boost when combining gazetteers with

other feature classes, therefore we made sure to

include them in our submissions for both regions.

The aggregate data indicated that the gap between

open and closed division was just 1%. When

compared to the findings of Task 1B, where the

top-performing systems relied heavily on human

curated dictionaries, this little improvement in

performance is surprising. Part-of-speech tags are

another intriguing feature class. Table 1

demonstrates that reducing analysis to tokens and

the given part-of-speech tags allows the f-measure

to approach zero. In this scenario, we employed a

feature for each part-of-speech tag (a total of 12),

and a feature for each token in the training corpus.

Only the feature representing the token itself and

the part-of-speech tag of the token are 1s in this

vector. The SVM seems to be entirely bamboozled

by this data. However, several systems have shown

that POS may boost NER performance when

trained on a domain-specific corpus and combined

with other features [5,6].

Following the enlargement to full gene

names

 A set of criteria (see Table 3) was manually

developed to convert the SVM's predictions of

single tokens into whole gene name phrases. Our

rules' structure is described in further depth in the

"Methods" section. These guidelines either remove

tags from individual tokens or expand a series of

tokens into a whole sentence. When the SVM

assigns a positive tag to a sequence of tokens

longer than one that has been labelled as a gene

name, that tag is never deleted. Our system

improves by 12% in accuracy and 10% in recall

once post-processing is applied compared to its

unaltered state. More than 20% of the original

incorrect negative predictions have been rectified (a

total of around 300 gene names). To further reduce

false positives, 120 single-word terms like

"protein" are removed (representing 10% of the

total). When it comes to the latter, we determined

via thorough examination that the post-processing

is always accurate. Figure 4 shows the difference in

recall and accuracy after the expansion was

implemented.

Discussion

Our technique for identifying protein and gene

names in written text is composed of the following

basic building blocks: To begin, we establish a set

of attributes that might be useful for the standalone

categorization of words. Second, we use recursive

feature elimination to narrow down the feature

space and zero in on the features that provide the

most performance boost to the underlying machine

learning classifier. Finally, single-word

classifications are combined into phrase

classifications by rule-based post processing.

Starting with the effects of the RFE stage, we'll go

through each of these key issues in turn. In the

section under "Related Work," we will compare our

system to others in order to analyze its broad set of

characteristics and its effect.

Conclusion

An approach to extracting gene and protein names

from text has been demonstrated. Our method

utilizes a sliding window strategy in tandem with a

Support Vector Machine to categorize words. We

use a pattern-based post-processing step after

making this forecast of candidate tokens in order to

recognize compound names. Tokens, character n-

grams, a gazetteer, and orthographic traits were

identified as the most useful features and feature

classes for differentiating gene names from other

text. The latter group includes checks for Greek

words and patterns including capitalization,

numeric characters, and special symbols. The

collection was finished off by distances to the

keywords. We demonstrated that the performance

may be greatly improved by careful selection and

testing of feature classes utilized for the vector

space model representation of tokens. It is essential

to collect many feature classes and examine each

one for potential biases. Prediction quality was

affected by feature selection for the NER task at

hand. Using recursive feature removal, we found

that features and feature classes that negatively

impacted performance could be identified. When

used to detection, RFE is able to identify a subset

 ISSN2454-9940www.ijsem.org

 Vol 11, Issuse.4 Dec 2020

of characteristics that is just as effective as the

entire set.

References

[1]. BioCreAtIvE Challenge Cup 2003

[http://www.pdg.cnb.uam.es/ BioLINK/BioCreative.eval.html].

[2]. Yeh A, Morgan A, Colosimo M, Hirschman L:

BioCreAtIvE task 1A: gene mention finding evaluation. BMC

Bioinformatics 2005, 6(Suppl 1):S2.

[3]. de Bruijn B, Martin J: Literature mining in molecular

biology. Proc EFMI Workshop on Natural Language

Processing in Biomedical Applications, Nicosia, Cyprus

2002:1-5.

[4]. Shatkay H, Feldman R: Mining the Biomedical Literature

in the Genomic Era: An Overview. Journal of Computational

Biology 2003, 10(6):821-856.

[5]. Zhou G, Shen D, Zhang J, Su J, Soon TH, Tan CL:

Recognition of Protein/Gene Names from Text using an

Ensemble of Classifiers and Effective Abbreviation Detection.

BioCreAtIvE Workshop, Granada, Spain 2004.

[6]. Zhou G, Zhang J, Su J, Shen D, Tan CL: Recognizing

names in biomedical texts: a machine learning approach.

Bioinformatics 2004, 20(7):1178-1190.

[7]. Kinoshita S, Ogren P, Cohen KB, Hunter L: Entity

identification in the molecular biology domain with a

stochastic POS tagger: the BioCreative task. BioCreAtIvE

Workshop, Granada, Spain 2004.

[8]. McDonald R, Pereira F: Identifying Gene and Protein

Mentions in Text Using Conditional Random Fields.

BioCreAtIvE Workshop, Granada, Spain 2004.

[9]. Song Y, Yi E, Kim E, Lee GG: POSBIOTM-NER: A

Machine Learning Approach. BioCreAtIvE Workshop,

Granada, Spain 2004.

[10] . Mitsumori T, Fation S, Murata M, Doi K, Doi H:

Gene/protein name recognition using Support Vector Machine

after dictionary matching. BioCreAtIvE Workshop, Granada,

Spain 2004.

[11]. Guyon I, Weston J, Barnhill S, Vapnik VN: Gene

Selection for Cancer Classification using Support Vector

Machines. Machine Learning 2002, 46(1–3):389-422.

[12]. Wain H, Lush M, Ducluzeau F, Povey S: Genew: The

Human Nomenclature Database. Nuc Acids Res 2002, 30:169.

13. Chang JT, Schütze H, Altman RB: GAPSCORE: finding

gene and protein names one word at a time. Bioinformatics

2004, 20(2):216-225.

[14] . Seki K, Mostafa J: A Probabilistic Model for Identifying

Protein Names and their Name Boundaries. Proceedings of

the Computational Systems Bioinformatics Conference (CSB)

2003.

[15] . Vapnik VN: The Nature of Statistical Learning Theory

New York: SpringerVerlag; 1995.

[16]. Cristianini N, Shawe-Taylor J: An Introduction to

Support Vector Machines and other kernel-based learning

methods Cambridge: Cambridge University Press; 2000.

[17]. Joachims T: Text Categorization with Support Vector

Machines: Learning with Many Relevant Features.

Proceedings of ECML-98, 10th European Conference on

Machine Learning, Springer 1998.

[18]. Bickel S, Brefeld U, Faulstich L, Hakenberg J, Leser U,

Plake C, Scheffer T: A Support Vector Classifier for Gene

Name Recognition. BioCreAtIvE Workshop, Granada, Spain

2004.

[19]. Brill E: A simple rule-based part of speech tagger.

Proceedings of ANLP-92, 3rd Conference on Applied Natural

Language Processing, Trento, Italy 1992.

[20]. Marcus MP, Santorini B, Marcinkiewicz MA: Building a

large annotated corpus of English: the Penn Treebank.

Computational Linguistics 1993, 19:313-330.

