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Abstract 

Task 1A of the Bio Creative assessment required the development of systems that can extract gene and protein names from free-text 

utterances. To solve this issue, we use a pattern-based post-processing to recognize phrases and a word classification system based on a 

sliding window method with a Support Vector Machine. Whether or whether the categorization approach takes into account factors like 

prefixes, suffixes, character n-grams, capitalization patterns, and word order is vital to the system's effectiveness. We provide a method 

based on recursive feature elimination, RFE, for comparing the efficacy of various feature sets. We can measure the effect of various 

feature sets on the outcomes of the word classification problem by gradually decreasing the number of features utilized by the system. 

We may then use this information to develop solutions that are quicker and simpler to comprehend by identifying descriptive 

characteristics and gaining insight into the underlying structure of the issue. We find that the SVM is resistant to the use of duplicated 

features. When compared to utilizing all of the features, RFE yields a 0.7% performance boost. In addition, employing less than 5% of 

the features may provide performance that is just 2.3% worse than this limit. 

 

Introduction  

Named entity recognition (NER) problems with 

gene and protein names [2] are at the heart of Task 

1A of the Bio Creative assessment [1]. Participants 

were given a corpus of 10,000 words that included 

protein and gene names. We'll abbreviate "gene and 

protein" to "gene" for brevity, although these lines 

required the development of algorithms to identify 

gene and protein names in random text. The 

algorithms were evaluated using a dataset of 5,000 

unread and untagged texts. The assessment was 

stringent, meaning that multi-name (phrase) gene 

names like "Drosophila shc gene product" had to be 

identified in their entirety, without any missing or 

extraneous portions. All of the organizer-provided 

statements have already been tokenized, or parsed 

into individual words and phrases. The training 

corpus also included embedded part-of-speech tags 

for easier comprehension. There are several 

publications available on the difficulties inherent in 

the NER process for gene names in biomedical 

literature (for examples, see [3,4]). Multiple names 

for genes, abbreviations galore, names that include 

numeric and special characters, and ambiguity over 

where a sentence ends all result from a lack of 

agreed-upon nomenclature standards. The 

recognition of multi-word phrases has shown to be 

a particularly challenging challenge if rigorous 

assessment criteria are used. 

Methods 

 Our system consists of a two-stage process. To 

determine whether or not a given token is part of a 

gene name, a Support Vector Machine classifier 

[15-17] is taught to make that determination. In 

addition, our system activates a series of post-

processing rules that are sensitive to context and 

classify specific neighbouring tokens as genes in 

order to identify compound nouns [18]. Examples 

are represented as vectors in the SVM. Each 

dimension in the vector space represents a feature 

of an example, and the values of those parameters 

are unique to each instance. Each token in both the 

training and testing data serves as an example in 

our situation. Each instance is either marked as 

"positive" (a component of a gene name) or 

"negative" (not part of a gene name). Support 

Vector Machines (SVMs) are capable of learning a 

hyperplane with a discriminating margin between 

two classes. Which side of the hyperplane a new 

example (from the test corpus) falls on then 

determines whether the example is positively or 

negatively labelled.  
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Connected Tasks  

Our methods are used by several of the other 

groups in the 2003 Bio Creative assessment. Three 

further teams advocate for SVM-based token 

classifiers. The effectiveness of such methods 

varies considerably. We'll show you the systems 

that are most like ours and compare and contrast 

how they handle things. 

 

Figure 2Impact of the Recursive Figure 2 e Feature 

Elimination Impact of the Recursive Feature 

Elimination. Impact of removing 10% of the 

features with the lowest weight vctor in each round. 

After 30 iterations, with only 4.28% of all features 

remaining, the f-measure has dropped only by 2%. 

The underlying evaluation method only considers 

the recognation of single tokens rather than whole 

phrases. The bottom line (65 iterations) shows the 

impact of the remaining 0.11% of all features. All 

values are evaluated without the post-expansion 

step (see text). Dependence of the f-measure on the 

number of features  

 

Figure 3 The f-measure's dependence on the feature 

count. Precision, recall, and f-measure results for a 

range of feature counts. As we start with the whole 

feature set, the features with the lowest weight 

vector are eliminated using recursive feature 

elimination, and our performance is evaluated after 

each round. 

PosBIOTM-Ner  

Song et al. [9] utilize a variant of the BIO-markup 

with classes that isolate gene names from adjacent 

text. Not only do they classify tokens as being 

either inside or outside of a gene name (I/O), but 

they also introduce a new category for tokens that 

come before the first letter of a compound gene 

name (B). In our own system, we solely make use 

of I and O. Significantly expanding the feature 

space using an edit-distance-based gazetteer search 

for tokens and phrases. The edit-distance algorithm 

takes into account linguistic shifts. Our method 

involves using precise matches of candidate 

phrases against a gazetteer that also includes 

alternative spellings. Song et al. make an effort to 

artificially expand the training sample. Sentences 

from the training corpus are recycled by the system 

with new gene names inserted. Tokens other than 

noun-phrases and determiners are disregarded 

entirely on the assumption that all proper nouns are 

limited to these constructions. The method's f-

measure drops from 73.8% without the extra 

training examples to 66.7% with them, showing 

that limiting it to noun-phrases does not boost its 

performance. Using fabricated data increases recall 

by 1-2% at the expense of a 17% decrease in 

accuracy. The primary differences between our 

system and PosBIOTM-NER are the usage of BIO-

classes and the invocation of a gazetteer, and 

PosBIOTM-NER achieves roughly 1% higher f-

measure, mostly due to the improved accuracy of 

its predictions (80% precision at 68.5% recall).  

Yam Cha 

The method described above is similar to one used 

by Matsumura et al. [10], which extends BIO 

classes. The approach also makes use of a context 

window;however, this has no positive effect on our 

system's efficiency. We also tried using various 

sized context windows (both symmetrical and 

asymmetrical) to see whether they had any effect 

on performance, but were ultimately disappointed. 

However, keep in mind that our post-processing 

stage does employ context in a subtle way. The 

Yam Cha gazetteer function makes use of data 

from both SWISS-PROT and TrEMBL. Up to an f-

measure of 78.1%, performance is improved by 3 

percentage points. Yam Cha also uses the gazetteer 

in a different manner than we do, and its entries 

come from a different source. Token n-grams are 

used to find terms in the gazetteer that are a precise 

match. Yam Cha is around 5% more efficient than 

our approach, despite not include a name expansion 

phase. This comes as a shock since our system's 
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performance drops by around 15% when not post-

processed. 

Powerline 

Ensemble approaches using two HMM and one 

SVM classifier are proposed by Zhou et al. [5,6]. 

The SVM employs a feature set similar to our own. 

Instead,then using a single dimension to describe a 

candidate token's occurrence in a vocabulary, 

Powerline uses a separate dimension for each each 

word. Table 3 Orthographic Characteristics The 

post-expansion phase's guiding principles. Certain 

POS tags are converted to NEWGENE tags 

according to the regulations. In the extension of 

noun phrases, we leave off 372/222 nouns and add 

just 778 specific adjectives. The notation NN* 

denotes nouns, proper nouns, and plurals; JJ 

denotes adjectives; CD denotes cardinal numbers; 

DT denotes determiners; and '/' indicates that the 

token is itself a noun. 

 

similar to ours in terms of token representation, but 

furthermore include tests for parentheses, 

punctuation, and stop words. We don't know the 

details of Powerbaseone’s stop word list, but our 

own version uses the top 10,000 most frequent 

English terms (out of a total of 100, 000). Zhou et 

al. differentiate between two types of triggers that 

indicate whether or not a token is included in two 

distinct word lists. The first group comprises terms 

that are often found within gene names, whereas 

the second group contains words that are frequently 

found in the local context of gene names. Our own 

approach calculates a single feature's value based 

on its distance from these keywords. The authors 

offer an ensemble technique; hence it is unclear 

how their system performs in comparison to ours in 

terms of prediction accuracy. Similarly, the impact 

of various feature sets varies. Despite what some of 

the other participants may claim, our prediction 

ability is not improved by some of the factors they 

find helpful. We've recreated everything that wasn't 

in our first system, including ldl, ddd, and DNA 

(see Table 1), but these additions don't help us 

much. Because of their poor discriminative 

strength, practically all of them are eliminated in 

early rounds by the recursive feature removal. 

Feature classes and feature definitions  

We construct a collection of features from the 

token and its context for each token in the training 

and test corpora. For example, instead of using just 

the characteristics "al", "lap", and "ph.", we may 

switch to using all character 2-grams. Feature 

engineering, therefore, is concerned with 

determining which kinds of features are most 

useful (for examples, see Table 1). The features are 

created using the following categories and their 

respective definitions: Invisible token Each token 

in the training set is treated as a separate feature. In 

cases where they are relevant, the values from tf.idf 

are used. It is our goal to train a model that can 

easily include novel tokens. One binary feature 

("unseen") is included to accomplish this goal; it is 

set to 0 if the token is part of the training set and 1 

otherwise. Tokens are assumed to be invisible at 

random throughout training. This implies that we 

don't properly set the tf.idf value for the single 

token feature and instead set the "unseen" feature to 

1 with a minimal prob ability. 

Results  

We employed a technique where feature classes 

were selected via trial and error for the 

BioCreAtIvE evaluation. The outcomes of this 

system will be presented initially. Once the 

competition was over, we used a more methodical 

approach to zero in on the best possible feature set. 

Starting with a model that included every possible 

feature class, we then iteratively eliminated the 

ones with the lowest weights in the SVM-learned 

model. In this chapter's second half, the findings 

are discussed. We conclude by demonstrating the 

results of our post-processing phase, which was the 

same for both scenarios. Table 1 lists all 

characteristics analysed by both methods, along 

with their effect on a default classifier.  

Unique functionality packages 

 We created many feature classes and tested out 

various on/off class use combinations for the Bio 

Creative submission. In Table 1, the feature classes 

highlighted with a "*" were the ones we submitted. 

Simply using the tokens as features provides a 

baseline f-measure of 54.1% for the system. The 

system reaches, say, 68.2% following the addition 

of character 1-, 2-, and 3-grams. When all the bells 

and whistles are turned on, performance suffers. 

We did this by identifying a subset of surface cues 

that gave us the highest attainable f-measure. This 

subset covers checks for tokens consisting of a 

single or double capital letter, all capital letters, all 

lowercase letters, all uppercase letters, special 

characters, and numerical combinations. Not all of 

these characteristics enhanced performance when 
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selected alone, but only in conjunction with others, 

maybe because of the connection of feature classes. 

For instance, the performance benefits of using 

special characters and letter/digit combinations 

were seen only when the two were utilized in 

tandem. 

The competition was split into two categories: 

open, where participants could build gazetteers 

using any available data, and closed, where 

participants could only use the training data given 

by the tournament's organizers. Because of the 

greater expected influence of gazetteers, this 

distinction was made. Contrary to expectations, this 

has not materialized. When used with gazetteers 

produced from the training data, automatically 

constructed gazetteers had a rather little effect. 

Performance drops slightly when only tokens are 

used as features compared to when the gazetteer 

constructed from training data and external sources 

(synonym lists for gene names from mouse, yeast, 

and fruit fly (all from Biotreat tIvE Task 1B), and 

human [12]) are used as features (see Table 1). We 

saw a little boost when combining gazetteers with 

other feature classes, therefore we made sure to 

include them in our submissions for both regions. 

The aggregate data indicated that the gap between 

open and closed division was just 1%. When 

compared to the findings of Task 1B, where the 

top-performing systems relied heavily on human 

curated dictionaries, this little improvement in 

performance is surprising. Part-of-speech tags are 

another intriguing feature class. Table 1 

demonstrates that reducing analysis to tokens and 

the given part-of-speech tags allows the f-measure 

to approach zero. In this scenario, we employed a 

feature for each part-of-speech tag (a total of 12), 

and a feature for each token in the training corpus. 

Only the feature representing the token itself and 

the part-of-speech tag of the token are 1s in this 

vector. The SVM seems to be entirely bamboozled 

by this data. However, several systems have shown 

that POS may boost NER performance when 

trained on a domain-specific corpus and combined 

with other features [5,6]. 

Following the enlargement to full gene 

names 

 A set of criteria (see Table 3) was manually 

developed to convert the SVM's predictions of 

single tokens into whole gene name phrases. Our 

rules' structure is described in further depth in the 

"Methods" section. These guidelines either remove 

tags from individual tokens or expand a series of 

tokens into a whole sentence. When the SVM 

assigns a positive tag to a sequence of tokens 

longer than one that has been labelled as a gene 

name, that tag is never deleted. Our system 

improves by 12% in accuracy and 10% in recall 

once post-processing is applied compared to its 

unaltered state. More than 20% of the original 

incorrect negative predictions have been rectified (a 

total of around 300 gene names). To further reduce 

false positives, 120 single-word terms like 

"protein" are removed (representing 10% of the 

total). When it comes to the latter, we determined 

via thorough examination that the post-processing 

is always accurate. Figure 4 shows the difference in 

recall and accuracy after the expansion was 

implemented.  

Discussion  

Our technique for identifying protein and gene 

names in written text is composed of the following 

basic building blocks: To begin, we establish a set 

of attributes that might be useful for the standalone 

categorization of words. Second, we use recursive 

feature elimination to narrow down the feature 

space and zero in on the features that provide the 

most performance boost to the underlying machine 

learning classifier. Finally, single-word 

classifications are combined into phrase 

classifications by rule-based post processing. 

Starting with the effects of the RFE stage, we'll go 

through each of these key issues in turn. In the 

section under "Related Work," we will compare our 

system to others in order to analyze its broad set of 

characteristics and its effect. 

Conclusion  

An approach to extracting gene and protein names 

from text has been demonstrated. Our method 

utilizes a sliding window strategy in tandem with a 

Support Vector Machine to categorize words. We 

use a pattern-based post-processing step after 

making this forecast of candidate tokens in order to 

recognize compound names. Tokens, character n-

grams, a gazetteer, and orthographic traits were 

identified as the most useful features and feature 

classes for differentiating gene names from other 

text. The latter group includes checks for Greek 

words and patterns including capitalization, 

numeric characters, and special symbols. The 

collection was finished off by distances to the 

keywords. We demonstrated that the performance 

may be greatly improved by careful selection and 

testing of feature classes utilized for the vector 

space model representation of tokens. It is essential 

to collect many feature classes and examine each 

one for potential biases. Prediction quality was 

affected by feature selection for the NER task at 

hand. Using recursive feature removal, we found 

that features and feature classes that negatively 

impacted performance could be identified. When 

used to detection, RFE is able to identify a subset 
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of characteristics that is just as effective as the 

entire set. 
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