

ISSN2454-9940

www.ijsem.org

 Vol 18, Issuse.1 March 2024

83

SELF-REPAIRING CARRY-LOOKAHEAD ADDER WITH HOT-

STANDBY TOPOLOGY

Mr. B. KALYANCHARAVARTHY1 , NAKKA VEERA VENKATA SATYANARAYANA SAGAR2 ,

PINNINTI JYOTHIKA3 , BONDA VEERA VENKATA SAYTANARAYANA MURTHY4 ,

VADAGA MANOJ KUMAR5 , M VEERA VENKATA SURYA KANDIPALLI6

1Assistant Professor , Dept.of ECE, PRAGATI ENGINEERING COLLEGE

23456UG Students,Dept.of ECE, PRAGATI ENGINEERING COLLEGE

ABSTRACT

In this project, a self-checking and -repairing carry-lookahead adder (CLA) is proposed with

distributed fault detection ability. The presented design with self-checking and fault

localization ability. The repairing operation utilizes the hot-standby approach with partial

reconfiguration in which the faulty module would be replaced by an accurately functioning

module at run-time.

The proposed self-repairing adder with high fault coverage requires 161.5% area overhead as

compared to conventional CLA design which is 35.3% less as compared to the state- of-the-art

partial self-repairing CLA

INTRODUCTION

Among the fastest adders used in digital systems is the Carry-Lookahead Adder (CLA). For

CLA, the summation circuitry for each bit can “lookahead” for their respective incoming carry

bit. It means that each full adder in the cascade can run independently without waiting for the

carry out of the preceding adder. The speed is therefore significantly improved, at the expense

of hardware overhead. Therefore, traditional self-checking approaches like double modular or

triple modular redundancy are not feasible for CLA due to their area overhead. The most

common approach for designing self-checking CLA is the parity prediction scheme that can

detect faults in either even or odd number of bits.

In this paper, we propose a self-checking and -repairing CLA with distributed fault detection

ability.The proposed design can detect and locate multiple faults simultaneously, with the

condition that each module should have only one fault at a time. The fault recovery is achieved

with a hot standby approach in which a spare module replaces the faulty one. The replacement

http://www.ijsem.org/

ISSN2454-9940

www.ijsem.org

 Vol 18, Issuse.1 March 2024

84

process is conducted with a novel partial reconfiguration concept in which the modified input

values update the functionality of the circuits generating the internal carry bits.

LITERATURE SURVEY

1."An area-delay efficient multi-operand binary tree adder using modified carry select adder"

by M. Singh, M. Sharma, and A. K. Verma (2016):

This paper proposes an area-delay efficient MOBTA that uses a modified carry select adder

(MCSA) as the building block. The proposed adder is shown to have a smaller area and delay

than other existing MOBTAs while still maintaining a similar power consumption.

2. "Low power and high-speed multi-operand binary tree adder" by A. Mittal, M. Gupta, and

R. S. Anand (2017):

This paper proposes a low-power and high-speed MOBTA that reduces power consumption by

optimizing the carry propagation path and reducing the number of logic gates required to

implement the adder. The proposed adder is shown to have a lower power consumption and a

faster speed than other existing MOBTAs.

3. "Low-Power Multi-Operand Binary Tree Adder Design Based on Signed-Digit Number

System" by C. Li, Y. Li, and J. Li (2019):

This paper proposes a low-power MOBTA design based on the signed-digit number system

(SDNS). The proposed design reduces power consumption by exploiting the redundancy in the

SDNS representation and using a carry-save adder (CSA) as the building block.

4. "Design of low-power multi-operand binary tree adder using hybrid binary adder cells" by

S. Patra, S. Pal, and D. K. Mandal (2020):

This paper proposes a low-power MOBTA design using hybrid binary adder cells (HBACs).

The proposed design reduces power consumption by optimizing the carry propagation path and

reducing the number of logic gates required to implement the ADDER

PROPOSED SYSTEM

PROPOSED SELF-REPAIRING CARRY LOOK-AHEAD ADDER DESIGN

A. CLA Topology And Operation

http://www.ijsem.org/

ISSN2454-9940

www.ijsem.org

 Vol 18, Issuse.1 March 2024

85

In CLA, all the internal carry bits are pre-computed in parallel to facilitate its operation.

Typically, a CLA consists of two main blocks.

The first block is the carry block (CBL), which generates the internal carry bits using carry

generator (CG) modules. The second block is the summation block (SBL) which is

responsible for generating the sum-bits using the sum generator (SG) modules, as shown

in below Fig.

Figure.2 CLA Block Diagram

The CBL is designed using the basic concept of carry propagation and generation. The

carry bit will be generated if both inputs are high (i.e., Gi = ai · bi), whereas the carry will

be propagated if either one or both input bits are high (i.e., Pi = ai ⊕ bi or Pi = ai + bi).

By combining these two operations, the ith carry bit can be computed. As inherent to the

CLA, each carry bit should be generated in parallel using independent circuitry.

This logic sharing is further extended to compute the sum-bits, which are equal to Pi ⊕ Ci-

1. Since each carry-bit is generated using an independent circuitry, the CBL is the most

area- hungry and complex part of a CLA. Its area overhead and complexity becomes

extremely high as the size of the adder increases. To address this issue, the block

architecture of CLA is widely adopted in which multiple small-size CLA blocks are

repeated to construct an adder for large input bit-width. As a result, the number of carry bits

generated by each CBL is equal to the block size, as shown in Fig. 1(a). The final carry-out

bit Cout generated by each CBL will be used as Cin for the next CBL. The

http://www.ijsem.org/

ISSN2454-9940

www.ijsem.org

 Vol 18, Issuse.1 March 2024

86

To reduce computational delay, the carry block should be designed such that Cin is the last

element needed for computation. As soon as Cin is received from the previous block, the

output could be updated immediately. The logic cell implementations in CG vary from CG0

to CG3 depending on their respective Boolean equations. Meanwhile, except for the first

CBL, each consecutive CBL will generate the carry-bits with an additional delay of two

logic gates, i.e., X1 and X2

 Figure.2 CG module block diagram

B.Proposed Self-Checking CLA With Fault Localization

To address this issue, we propose a hardware-friendly self-checking and fault localization

approach for CLA, in which the ith sum-bit (Si) and carry-out bit (Ci) respectively generated

by the SBL and CBL, are compared with the ith input bits ai and bi to determine any

potential fault. Its operation can be summarized as: Si of the SBL and Ci of the CBL will

be equal to each other, if and only if the previous carry-bit Ci-1 of the CBL and the ith input

bits are all equal, that is:

If (ai == bi == Ci-1) then Si = Ci otherwise Si != Ci.

With the above conditional decision, an equality tester is required to check whether ai, bi and

Ci- 1 are equal and produce a comparison output Eqt(i), followed by a checker to determine

whether a fault happens.For an error-free adder, if E qt(i) = 1, Si and Ci must be equal;

otherwise, they must be complementary. The Eqt(i) bit can be computed using (6), and the

checker can be implemented.

 Figure.3 SG module block diagram

http://www.ijsem.org/

ISSN2454-9940

www.ijsem.org

 Vol 18, Issuse.1 March 2024

87

Proposed Self-Repairing Cla With Partial Reconfiguration

This awareness cannot be achieved without modifying the circuitry because each carry-bit

has a unique equation. For example, the logic circuit to generate C2 requires the signal G0,

G1, G2, P0, P1 and P2 as in (4). Suppose C1 gets faulty, then the values of G1, G2, P1, and

P2 should be modified so that the circuitry for generating C2 becomes equivalent to that of

C1. A simple shift operation is insufficient as it can only modify G2 and P2. Therefore, a

partial reconfiguration is required with the shift operation so that the hot-standby approach

becomes applicable for adder having independent carry circuits, such as the CLA.

A 4-bit self-repairing CLA using the proposed approach is shown in Fig. As stated, ei represents

the individual error of the SG/CG pair, it is therefore used to update the input bits of the faulty

module to 1,0 and also to divert the input carry of the faulty module to the next SG. Since the

logic cell of each CG has already been modified, the positions of all other proceeding carry-

bits will remain unchanged. Whereas Ef represents the universal error, whose value is a

function of all individual ei. Ef will be high for all SGs after the faulty one, whereas its value

remains low for all the SGs prior to the faulty one. Therefore, it is used to control the shift

operation of the input and output bits. CGX and SGX in the spare modules that are used during

the recovery process.

 Figure.4 Block Diagram of Self-repairing carry look adder Schematic CG-X BLOCK

STIMULATION & SYNTHESIS RESULTS

http://www.ijsem.org/

ISSN2454-9940

www.ijsem.org

 Vol 18, Issuse.1 March 2024

88

 Figure.5 Simulation Wave Result figure.6 Schematic SG-Eq-Tester

BLOCK

Figure.7 Schematic self-repairing CLA

 Figure.8 Schematic SG BLOCK Figure.9 Schematic CG-0 BLOCK

http://www.ijsem.org/

ISSN2454-9940

www.ijsem.org

 Vol 18, Issuse.1 March 2024

89

 Area Report

ADVANTAGES

Improved reliability: By using redundancy and fault tolerance techniques, the adder can

operate with a higher level of reliability, even in the presence of faults.

Reduced downtime: With the use of hot-standby topology, the adder can switch seamlessly

between the active and standby circuits, reducing downtime and improving overall system

availability.

Improved fault tolerance: The adder is designed to detect and isolate faults, allowing for

targeted replacement of faulty components without affecting the operation of the rest of the

circuit.

Increased accuracy: By ensuring that the adder operates correctly and reliably, the system can

produce accurate results, which is critical in applications that depend on precise .

APPLICATIONS

Medical devices: The adder can be used in medical devices such as MRI machines and other

imaging equipment, where accuracy and reliability are essential.

Industrial automation: The adder can be used in industrial automation systems, such as

robotic systems and process control systems, where high levels of accuracy and reliability are

required.

Financial applications: The adder can be used in financial applications, such as stock trading

and financial modelling, where accuracy and reliability are crucial.

http://www.ijsem.org/

ISSN2454-9940

www.ijsem.org

 Vol 18, Issuse.1 March 2024

90

Communications: The adder can be used in communication systems, such as wireless

networks and satellite communications, where reliable and accurate computations are required

for signal processing and data transmission.

CONCLUSION

The designed approach uses the concept of self-checking and fault localization full adder in

which the fault is detected by comparing the input and output bits. The proposed 8-bit self-

checking CLA requires 20.6% more area than conventional CLA, whereas it can detect and

localize multiple faults at a time with the condition that a single module should not have more

than one fault at a time.

The time latency of conventional CLA will not be affected with the proposed self-checking

approach because the checker is not affecting the actual computation process.

FUTURE SCOPE

Hardware security: The self-repairing approach can be extended to include hardware security

features, such as tamper detection and response. This could be particularly useful for

applications that require high levels of security, such as military and aerospace systems.

Internet of Things (IoT): The self-repairing approach could be applied to IoT devices, which

often have limited resources and require high reliability. By using partial reconfiguration, the

adder circuitry could be dynamically adjusted to optimize performance and reduce power

consumption.

Machine learning: The self-repairing approach could be used to develop more robust and

reliable machine learning algorithms. By incorporating fault localization and partial

reconfiguration techniques, machine learning systems could continue to operate even in the

presence of faults.

REFERENCES

1. F. Tang, A. Bermak, and Z. Gu, “Low power dynamic logic circuit design using a pseudo

dynamic buffer,” Integration, vol. 45, no. 4,pp. 395–404, 2012.

http://www.ijsem.org/

ISSN2454-9940

www.ijsem.org

 Vol 18, Issuse.1 March 2024

91

2. N. Mehdizadeh, M. Shokrolah-Shirazi, and S. G. Miremadi,“Analyzing fault effects in the

32- bit OpenRISC 1200 microprocessor,” in Proc. 3rd Int. Conf. Avail. Rel. Security, 2008, pp.

648– 652.

3. A. Meixner, M. E. Bauer, and D. J. Sorin, “Argus: Low-cost, comprehensive error detection

in simple cores,” in Proc. 40th Annu. IEEE/ACM Int. Symp. Microarchit., 2007, pp. 210–222.

4. H. G. Kang and T. Sung, “An analysis of safety-critical digital systems for risk-informed

design,” Rel. Eng. Syst. Safety, vol. 78, no. 3, pp. 307–314, 2002.

5. J. E. Smith and P. Lam, “A theory of totally self-checking system design,” IEEE Trans.

Comput., vol. C-32, no. 9, pp. 831–844, Sep. 1983.

6. A. G. Ganek and T. A. Corbi, “The dawning of the autonomic computing era,” IBM Syst. J.,

vol. 42, no. 1, pp. 5–18, 2003.00

http://www.ijsem.org/

