

 ISSN2454-9940www.ijsem.org

 Vol 12, Issuse.4 Oct 2021

Examining the Cloud/IX OS on ARM-based Data Center Servers

DR.V.V.SUNIL KUMAR
1
, K.SUNIL KUMAR

2
,

Abstract

A transition from costly hardware to a large number of inexpensive servers has become a dominant trend in data center design

architecture, creating new challenges for data center architects and necessitating the adoption of fresh approaches. In this paper, we

explore alternative approaches to designing distributed systems in the spirit of the Plan9 operating system. We begin with an overview of

application and research initiatives such as the porting of Plan9 to the IBM Blue Gene/L supercomputer, the usage of Plan9 in data

centers and clouds, and the development of distributed embedded systems. Then, we present Cloud/IX, an OS for ARM-based server

systems that, like Plan9, is based on the Plan9 architecture and runs on top of a variant of Plan 9 called 9front. We also detail the

infrastructure and findings of an experimental evaluation of Cloud/IX on a real-world, multi-server farm in a data center.

Keywords:

operating systems; distributed systems; Plan 9 operating system model; server platforms; data centers; Cloud/IX

operating system.

Introduction

Modern data centers look very different than they

did just 10 years ago and it's not just that 10 years

is perhaps longer than any computer lifespan. The

emergence of Big Data, Cloud Computing, 4G

Mobile data, and other modern trends drastically

changed the spectrum of industry's tasks and

problems. Recent advances in science suchas

genetic sequencing and nuclear research made sure

we can safely assume that data production and

massively parallel processing (MPP) continues its

exponential growth. Integration with private and

public clouds, server consolidation and full

virtualization, more extensive skill set of data

center personnel are all consequences of this

explosive growth. This poses new tasks and

demands the use of different strategies for data

center (DC) architects. An increase in power

consumption in DCs constitutes the major problem

to the DC market development. Energyrelated costs

account for about half of the total server

maintenance costs of data center ownership, while

most of these goes to the provision of power supply

and cooling to the servers. In general, we can

consider two approaches to solution of the energy

efficiency problem, namely: an efficient use of

existing facilities and resources (e.g., use of

virtualization and cloud computing, allowing to

increase utilization rate of available resources and

to decrease the equipment needs), and new

architectural solutions to the data center designs

(e.g., Cisco Unified Computing System).

The energy efficiency problem of the server design

is approached at different levels from a processor

core, through the single server, and up to the server

farm. At processor level, the ARM energy-efficient

processor architecture [1] is nowadays considered a

solution of choice to the development of server

hardware. According to IDC forecasts, by 2015 the

ARM architecture can win more than 15% market

share of server hardware. In September 2010, the

British company ARM Holdings first entered this

market with Cortex-A15 processor based on

ARMv7-architecture.Their version of the ARM

Cortex A15 MPCore, designed for CPU clocks of

up to 2.5 GHz, demonstrated the five times

performance improvement with respect to the

processors used in smart phones while maintaining

the same energy consumption levels. Recently,

ARM has released the first 64-bit processors -

CortexA57 and A53, and a new 64-bit architecture

- ARMv8, which is nearly ready for mass

production

.

PROFESSOR
1
, ASSOCIATE PROFESSOR

2
,

DEPARTMENT OF CSE

PBR VISVODAYA INSTITUTE OF TECHNOLOGY AND SCIENCE::KAVALI

To leverage the advantages that new energy-

efficient processor architecture offers, the server

architects request new software solutions both at

the operating systems level and at level of the

server virtualization layers. An example of

developments in this area is the x86 binary code

compiler for the ARM architecture designed by the

Elbrus Technology [2]. It allows for migration of

software written for x86-based servers to the ARM

processor architecture. Software emulator will

allow unchanged run of applications compiled for

the x86-architecture on the ARM server. Recently,

ARM have published package additions to the

Linux kernel, which provide support to the

instruction set of the ARMv8-core. These additions

are now implemented in a number of flavors of

Linux, including Ubuntu. Thus, the design and

development of an operating system for servers

based on ARM processor architecture continues to

be a task of great importance, a quality solution to

which is expected to allow creation the efficient

distributed server farms in terms of performance,

power consumption, and scalability. In this paper,

we describe our solution to the distributed systems

design problems that we approach with the

development of a new operating system called

Cloud/IX. The design of our own operating system

follows the Plan9 model and is implemented on top

of one of Plan 9 derivatives called 9front - a free

software distributed operating system [3]. We

present the general characteristics of Plan 9-based

approach to the design of distributed systems, and

introduce the Cloud/IX operating system for data

center servers based on ARM processors. Section 2

provides quick discussion of distributed systems

application spectrum in its relation to the computer

architecture problems. Section 3 presents key

features of the Plan 9, accompanied with the

examples of Plan 9 use in diverse distributed

computing application areas. These include project

of porting Plan 9 to the supercomputer platform

(for MPP scientific computing applications),

project of using Plan 9 in data center server

platform (for distributed and cloud systems

applications), and a research project of adding real-

time scheduling into Plan 9 for distributed

embedded systems (DES) applications. Section 4

describes our Cloud/IX operating system for the

ARM-based server platforms. The experimental

testbed and results of experimental tests of the

Cloud/IX are discussed in Section 5. Finally, some

conclusions and future work are shown in Section

6.

Distributed Applications and its Impact

on Computer Architecture Design

There is a huge class of tasks that can be well

parallelized, which makes it much easier to run

them on multi-node computer architectures – this

includes mostly computational tasks, such as fluid

dynamics and optical modeling as well as generic

data processing, i.e. genetic sequencing and text

processing, including web search and indexing.

Web search and indexing is, in fact, one of the

most, if not the most widespread use of computing

resources today.

Some estimates put the percentage of worldwide

CPU cycles spent on it as high as 35%, which

sounds believable when you count for a fact that a

search engine consumes not just its own hardware's

resources, but also each and every server's it

indexes. This caused a prominent trend in data

center architecture design - a shift from powerful

and expensive hardware (like mainframes 25 years

ago and HP Superdome about a decade later)

towards a multitude of simple servers. These

massively parallel architectures can use either

Google-like server farms built from off-the-shelf

hardware or proprietary blocks forming what today

is called a supercomputer (IBM Blue Gene).

Trends in operating systems research

and development

While computer hardware evolved at the blazing

speed, the software counterpart obviously could not

remain the same. Early operating systems creators

didn't care much for architecture – nobody at the

time had the experience of writing a program this

big. As one of the consequences, those early OS's

lacked the modular structure, each and every

subroutine could be called globally, and the entire

thing was a huge monolithic “blob”. This made

scaling and expansion extremely difficult. First

OS/360 release took 5 years and 5000 people to

write and amassed just over 1 million lines of code.

Its successor Mastics, released in 1975, already

grew to 20 million lines. It was obvious that

without radical review of design principles further

advances were impossible. Thus, modular

paradigm was born, and most of the development

in modern software engineering is still based on it

or its variants. Modular design naturally led to

modules with similar functionality grouping

together and stratification of OS into hierarchical

model. Practically all modern OS's can be

subdivided into following levels:

Hardware support

 Machine-dependent code

 Common kernel mechanisms

 Resource manager

System calls API

 Utilities.

 Sometimes levels are split or combined, like in

nanokernel and microkernel architectures,

sometimes even swapped (exokernel), but the basic

structure remains more or less the same. Another

huge step in OS design was made when IBM

introduced its Virtual Machine that abstracted the

underlying hardware from the lowest level of OS.

This made possible system partitioning and running

several instances of OS on the single physical

machine. For a couple of decades, virtualization

was exclusively mainframe feature, but it was, of

course, bound to propagate into server and

workstation world. Nowadays, all major processor

manufacturers include hardware virtualization

support (VT for x86, TrustZone for ARM) [4]. It is

estimated that today over 50 percent of all server

workloads are virtualized and this figure is

projected to reach 86 percent by 2016 [5].

Virtualization also spread to workstations where it

is widely used as a low-cost software alternative to

acquiring dedicated hardware for test and

debugging purposes. Lately, it got even to the

mobile and embedded segments of the market,

where its benefits are security, interoperability and,

once again saving on hardware – a virtual

multimedia processor can be as good as a dedicated

physical one [6]. Virtualization allows

computational resource sharing and partitioning,

but there is also need for exactly the opposite – not

slicing the existing system into a number of virtual

machines, but uniting the resources of multiple

systems into a bigger and more powerful

“supersystem”. While virtualization techniques are

nowadays ubiquitous, including hardware

manufacturers' support (VT for x86, TrustZone for

ARM) and well known software solutions

(VMWare servers and stations, Oracle VBox, Xen),

aggregation is a much more complex problem.

Simply speaking, if a virtual node, from software

viewpoint, is indistinguishable from a physical

system, the topology of an aggregated system is

quite different from a single node. And, of course,

effective use of these aggregated resources requires

some sophisticated techniques.

 Related works: Plan9 operating system

revisited

Nowadays, there is a renewed interest in another

OS – Plan9 and its derivatives. Plan9 is an OS

developed in the late 1980s and early 1990s at

AT&T Bell Laboratories by the group of

researchers and engineers that included some of the

original UNIX creators [8]. In Plan9 design they

attempted to straighten out what they thought went

wrong with UNIX and its ancestors. When

introduced to the USENIX community in 1992, it

was received very well, with reviews ranging from

carefully optimistic to outright ecstatic branding it

“a UNIX killer”. Killing UNIX did not happen –

we can only guess for specific reasons, but the

general consensus seems to be that while Plan 9

was in many ways superior to UNIX, it just failed

to gain critical mass on the improvements [9].

Simply speaking, UNIX and later Linux as one of

UNIX flavors were not as elegant but still good

enough. This, combined with its massive code base,

put it in an industry leader position. Plan9,

meanwhile, found a niche as hobbyist and research

system. It has, as any great but underachieving

project would, a small but dedicated army of

followers. Its impeccable pedigree and elegant

design also make it very attractive as a subject in

Operating Systems courses in academia. Plan9 is

based on three major principles: x All resources are

named and represented by files in a filesystem x

There is a standard protocol, 9P, for accessing files

across node boundaries x Separate filesystems can

be joined into a single private name space It was

aggressive application of these principles that kept

Plan9 consistently compact and robust through the

years and a major rework in 2000-2004. Some of

Plan9 features turned out to be so attractive they

were adopted by mainstream UNIXs. Most

prominent of those is, perhaps, a filesystem

interface to system per-process statistics - /proc

filesystem. Linux's /sys filesystem representing

system-wide resources is another nod in that

direction. Plan9 also introduced UTF-8, a full and

honest n2 set of native and cross-compilers and

linkers for all supported architectures, and some

other nifty innovations.

One of the most attractive Plan9 qualities is its

compact size. Historically, it was introduced “when

things were small” and even Linux was not the

monster we know today. And it managed to stay

that through the years. For example, cat utility

resident footprint on Ubuntu 12.04 is 384K while

its Plan9 counterpart is just 11K. Similarly, most

standard utilities common for both systems show a

factor of 10 to 30 in memory footprint. Cache

usage is, of course, much more conservative in

Plan9 as well, which it even more important for

performance. This 'tight and robust' paradigm made

Plan9 an attractive candidate for embedded systems

design. There it was always, although marginally,

present, particularly in network equipment and

storage systems. The distributedprocessing model

of Plan 9 is very effective and flexible, and it is

attractive for embedded systems. The 9P protocol is

useful for inter-system communication. The private

name space of Plan 9 also enables flexible and safe

distributed processing in embedded systems. Plan 9

can run on various hardware platforms and is

highly suited to building large distributed systems.

A typical Plan 9 installation would comprise one or

more file servers, some CPU servers and a large

number of terminals (user workstations). The small

size and straightforward structure of (most of) its

source code, and low system management

overhead, makes it particularly suitable for

distributed embedded systems (DES) applications.

The server world, though, lusts for Plan 9’s other

features – and first of all a relatively thin 9P

protocol and the ease of inter-node communication

by manipulating name spaces. This leads to a

higher level of abstraction – applications are

agnostic of their execution details. They can run

anywhere on any node in the system, on any

architecture. Client can run, within one session,

several programs on geographically separated

machines. This improves modularity of any project

by representing any information or data as a set of

plain files [10]. 9P protocol was implemented for

several foreign systems, including Linux. Actually,

for Linux there are is a 9P server allowing

accessing files on a Linux server from Plan9 station

and 9P client to access Plan9 files from Linux

computer. This is very handy for cross-platform

development. As proof of the renewed interest in

Plan9 OS we'll take a look on three projects.

Cloud/IX operating system – a Plan9-

based solution to ARM-based server

platforms

When selecting the basic operating environment for

the development of Cloud/IX OS we used multiple

criteria, including among others the support for

distributed operations, scalability, license purity,

easy porting of device drivers and applications,

easy deployment and support, standard interfaces,

minimal system services overhead. The main

advantage of the 9front system for distributed

server application is its ixP protocol, which allows

for managing local and distributed resources by

simple mappings onto the namespace. Perhaps the

most notable disadvantage of 9front is the

difference between its set of system interfaces and

the POSIX, which is a traditional standard solution

for the similar products.

Here we can consider two different approaches to

solution of this problem. First, an APE (ANSI /

POSIX Environment) package was developed for

9front - the best approximate of the system

interfaces to the POSIX. Second, our team in

association with AltLinux company undertake

efforts of porting Linux on the ARM and

microTCA-based server platform (ARM,

microTCA). This will permit easy adaptation to the

target platform of many applications developed for

the Linux, including traditional cluster applications.

It should be noted that many useful features of

9front design were adapted to Linux. This applies,

in particular, to the ixP protocol, the use of which

in Linux is now possible at the level of mounted

file systems that allows for exchange of files

between Linux and 9front. Since our Cloud/IX is

based on 9front, it inherits all the features of its

prototype. The system is based on three principles:

x Resources are named and are available as files in

a hierarchical file system x ixP standard protocol

for access to local and remote resources x

unbounded hierarchies provided by diverse services

are linked together into an own hierarchical file

namespace. ixP protocol implements multiple

transactions, each of which sends a request from

the client process to the local or remote server and

returns the result. ixP controls the file system, not

just files. Access to the files occurs at the byte

level, not blocks, which distinguishes ixP from

protocols such as NFS and RFS [19]. At present, a

β-version of the Cloud/IX operating system is

developed, and a work is performed on porting the

most popular and commonly used software

applications (e.g., nginx – a web-server and a mail

proxy-server running on Unix-like operating

systems).

5Experiments with Cloud/IX

We have carried out tests of the software prototype

of the ARM-based server platform in order to study

the stability of the ported nginx http-server on

heterogeneous Cloud/IX system and its scalability.

The tests were performed in the Data Center at the

Systems and Solutions Ltd. on a distributed

computer system that comprises 24 x86-based

computers (blade servers), organized into 3 system

racks each with 8 blade servers. All blade servers

are equipped with at least one Ethernet 1000Mbps

controller.

Experimental

Setup During the experimental testing, we have

monitored the load level in cluster nodes with OS

services (separately for each subsystem), which

allows to conclude about potential ways of

performance improvement. To display the results

of the monitoring, a special purpose software was

developed to collect statistics from multiple nodes

in a cluster, to aggregate it on the single node, and

to transform monitoring results into format suitable

for the analysis and display in real-time. The

software receives data about the node’s and

network interface’s workloads and displays it in a

visual form on a web page. The solution is

implemented using the following technology stack:

x Server part of application is written in Clojure – a

lisp-dialect implementation for the JVM and

libraries: Ring, Composure, Web bit, Clj-json x

Client part is implemented in Clojure Script – a

dialect of Clojure that translates into a regular

JavaScript, executed in the browser x

Implementation of message passing mechanism

from the server to the client is based on

WebSocket’s technology x Dynamic rendering of

the graphical elements is realized by working with

Canvas element (HTML5 specification). To

generate requests to the load balancer,nix the

httpperf utility is used. Httpperf measures the

performance of web server and provides a flexible

environment for generating workloads for the

HTTP-server and for measuring its performance.

At the end of test run, it generates a

report, which contains three sections:

 general results, a groupdedicated to compounds

and group. In the load generating mode, it

generates requests with the substitution of the

growing numbers, which digits are used as

components of the path to the resource. Scenario of

testing the effectiveness of load balancing require

the creation of a nginx file hierarchy one each

node, so that their paths with respect to the root

directory of nginx match the query, formed by

httpperf, and thus the total amount of data would

exceed the size of RAM in each node. Under these

conditions, the disk subsystem becomes the

bottleneck at each node, so that it becomes possible

to evaluate the effect of workload parallelization.

The same sequence of non-recurring requests is

submitted to the balancer and to the separate node,

and the results are compared. Performance of

individual components and of the entire cluster is

also tested by repeated (identical) queries. Httpperf

allows you to adjust the number of requests per unit

of time, which is reflected in the number of

requests processed in parallel. The test is carried

out separately for downloading large files and for

downloading small files, allowing you to identify

the various potential bottlenecks in the ported

nginx. In this test scenario, the entire contents of

the file in the cache of the operating system, and a

disk subsystem is no longer a bottleneck. We

wanted the test results to reflect the performance of

the server solutions (nginx), as opposed to the

entire client-server complex. For this, it requires

either a presence of multiple client computers,

generating queries simultaneously, or the use of a

system for running the client, which outperforms

significantly a set of all nodes in the cluster

(without disk subsystem that is not used by the

client actively). For this study, we have chosen the

second solution.

Conclusion

In this article, we presented the Plan 9 operating

system model-based distributed systems design

strategy. Using examples from the realms of the

supercomputer, server platforms, and distributed

embedded systems, we demonstrated that the

fundamental concepts of the Plan 9 OS are ideally

adapted to capture the distributed processing

mechanisms originating from parallel and

distributed computational/programming models.

Applications may be written independently of the

specifics of the hardware on which they run thanks

to the standardization of the filesystem interface

and the simplicity of inter-node communication

made possible by the manipulation of file name

spaces. They are completely portable and can

function on any system node, regardless of

hardware.

In turn, this leads to an application that takes into

account both the model's specified functionality

and the communication requirements of a

distributed computing environment. Plan 9's

implementation of the 9P protocol offers a

framework for designing scalable distributed

system architectures and a hint for allocating

workloads among the available nodes in the

system. The ability to represent any kind of data or

information as a collection of simple files greatly

enhances the project's modularity. In addition, Plan

9's system servers are user mode processes, making

it a breeze to write new software for. In conclusion,

the rising popularity of Plan 9 and its offshoots is a

definite trend. Extensions to Plan 9's real-time and

MPP support are the subject of many active

initiatives.

References

 [1] S. Orlev. Revolution ARM. Journal of network solutions.

LAN №11, 2012. Available at:

http://www.osp.ru/lan/2012/11/13032394/.

[2] Startup Elbrus Technologies’ emulator will allow ARM

processors to work with x86-applications. Available at:

http://servernews.ru/596643.

 [3] "Plan 9 from the People's Front of cat-v.org (9front)",

NineTimes, June 17, 2011, retrieved September 13, 2012.

[4] T. Laplante, Virtualization has surpassed 50 percent of all

server workloads, DataCenterPost.com, March 20, 2014.

Available at: http://datacenterpost.com/2014/03/virtualization-

surpassed-50-percent-server-workloads.html.

 [5] O. Kharif, Virtualization goes mobile, Bloomberg

Businessweek. Technology, April 22, 2008. Available at:

http://www.businessweek.com/stories/2008-04-

22/virtualization-goes-mobilebusinessweek-business-news-

stock-market-and-financial-advice.

 [6] J. Dean, S. Ghemawat, MapReduce: Simplified Data

Processing on Large Clusters, 6th Symposium on Operating

Systems Design & Implementation (OSDI’04), December 6-8,

2004, USENIX 2004, pp.137-149. [PDF].

 [7] M. Isard, M. Budiu, Y. Yu, A. Birrell, D. Fetterly, Dryad:

Distributed Data-Parallel Programs from Sequential Building

http://www.osp.ru/lan/2012/11/13032394/
http://servernews.ru/596643
http://datacenterpost.com/2014/03/virtualization-surpassed-50-percent-server-workloads.html
http://datacenterpost.com/2014/03/virtualization-surpassed-50-percent-server-workloads.html
http://www.businessweek.com/stories/2008-04-22/virtualization-goes-mobilebusinessweek-business-news-stock-market-and-financial-advice
http://www.businessweek.com/stories/2008-04-22/virtualization-goes-mobilebusinessweek-business-news-stock-market-and-financial-advice
http://www.businessweek.com/stories/2008-04-22/virtualization-goes-mobilebusinessweek-business-news-stock-market-and-financial-advice

Blocks, European Conference on Computer Systems

(EuroSys’07), Lisboa, Portugal, March 21-13, 2007. [PDF].

[8] R. Pike, D. Presotto, S. Dorward, B. Flandrena, K.

Thompson, H. Trickey, and P. Winterbottom, Plan 9 from Bell

Labs, Computing Systems, vol. 8, no. 3, 1995, pp. 221–225.

Available at: http://plan9.bell-labs.com/sys/doc/9.html.

[9] E.S. Raymond, The Art of Unix Programming, Thyrsus

Enterprises, 2003.

[10] D. Presotto, P. Winterbottom, The Organization of

Networks in Plan 9. Available at: http://plan9.bell-

labs.com/sys/doc/net/net.html.

 [11] E. Van Hensbergen, C. Forsyth, J. McKie, and R.

Minnich, Petascale Plan 9 on Blue Gene, USENIX 2007

Annual Technical Conference (USENIX ATC’07), June 17-

22, 2007, Poster Session. [Abstract].

[12] R.G. Minnich, J. Floren, and A. Nyrhinen, Measuring

kernel throughput on Blue Gene/P with the Plan 9 research

operating system, in: Proceedings of the 6th International

Workshop on Plan 9 (IWP9), Athens, GA, USA, October 12,

2009. [PDF].

[13] J. McKie, J. Floren, Edging Towards Exascale with NIX.

[PDF]

 [14] NIX is a new multicore OS based on Plan9. Available at:

http://code.google.com/p/nix-os/.

 [15] F.J. Ballesteros, CSP-style Network, File, and System

Services in Clive. Lsub Systems Lab, Universidad Rey Juan

Carlos, Madrid, TR Draft, May 23, 2014. [PDF].

 [16] S.J. Mullender, P.G. Jansen, Real Time in a Real

Operating System, in: Herbert, Andrew James (et al.) (Eds.),

Computer Systems. Theory, Technology, and Applications,

Springer, 2004, pp. 213-221. ISBN 978-0-387-21821-2. [PDF].

 [17] S.J. Mullender, J. McKie, Real Time in Plan 9, in:

Proceedings of the 1st International Workshop on Plan 9

(IWP9), December 4-5, 2006, Madrid, Spain. [PDF].

 [18] Y. Sato, K. Maruyama, LP49: Embedded system OS

based on L4 and Plan 9, in: Proceedings of the 4th

International Workshop on Plan 9 and Inferno (IWP9),

Athens, GA, USA, February 21-23, 2009. [PDF].

[19] H. Trikey, АРЕ - The ANSI/POSIX Environment, Plan 9

Programmer's Manual, Volume 2, АТ&Т Bell Laboratories,

Murray Hill, NJ, 1991

http://plan9.bell-labs.com/sys/doc/9.html
http://plan9.bell-labs.com/sys/doc/net/net.html
http://plan9.bell-labs.com/sys/doc/net/net.html
http://code.google.com/p/nix-os/

