

 ISSN2454-9940

www.ijsem.org
 Vol 9, Issuse.4 Dce 2018

First Impressions: Evaluating Deprecated JavaScript APIs in Real-World Scenarios
Peeka Joselyn Elisheba Anand

1
, Dr.SK Moulali

2
, .Pilly Koteswara Rao

3

Abstract— The rapid evolution of web technologies brings forth the need to understand the real-world implications of

deprecated JavaScript APIs. This study, titled "First Impressions: Evaluating Deprecated JavaScript APIs in Real-World
Scenarios," endeavors to provide a comprehensive analysis of the practical usage of deprecated JavaScript APIs across diverse
web development landscapes.

Objective:
The primary objective of this research is to assess the prevalence, implications, and patterns surrounding the usage of

deprecated JavaScript APIs in actual development environments. By exploring their impact on web applications, we aim to
derive insights that inform best practices for developers and contribute to the ongoing discourse on web technology evolution.

Methodology:
Our study employs a mixed-methods approach, combining automated code analysis tools with manual inspection to examine

real-world codebases. We assess a diverse range of web applications, from small-scale projects to large-scale frameworks, to
capture a holistic view of the JavaScript API deprecation landscape. The evaluation spans various industry sectors and
application domains.

Key Findings:
Initial findings reveal noteworthy instances of deprecated JavaScript APIs persisting in active codebases. The study identifies

common scenarios where developers continue to rely on obsolete APIs and highlights potential challenges associated with
migration to newer alternatives. Additionally, the research explores the impact of deprecated APIs on application performance,
security, and maintainability.

Implications for Developers:
The study provides actionable insights for developers, emphasizing the importance of staying abreast of API deprecation

announcements and adopting best practices for migration. Practical recommendations are offered to mitigate risks associated
with deprecated APIs, fostering a proactive approach to ensuring the longevity and sustainability of web applications.

Index Terms—API deprecation, JavaScript, Software Library

I. INTRODUCTION

JavaScript is the backbone of the modern web, enabling

dynamic and interactive web applications that empower

user experiences across the globe. Over the years, the

language has evolved significantly, introducing new

features and APIs to meet the ever-changing demands of

web development. However, this evolution also

necessitates the deprecation of older APIs to maintain the

language's coherence and security.

 In this fast-paced landscape of web

development, developers often find themselves juggling

legacy code with cutting-edge solutions. Deprecated

JavaScript APIs, once the cornerstone of web development,

now face obsolescence. They linger in codebases, often due

to compatibility concerns, inertia, or simply an oversight.

 The ramifications of using deprecated APIs can be

profound. Performance bottlenecks, security vulnerabilities,

and compatibility issues can jeopardize not only the web

application but also the user's experience. Furthermore,

maintaining deprecated code can be costly in terms of time

and resources, hindering the adoption of modern JavaScript

best practices and libraries.

 The focus of this study is to provide an in-depth

evaluation of deprecated JavaScript APIs in real-world

scenarios. We aim to assess the extent to which deprecated

APIs persist in the wild, quantify their potential impact on

web applications, and explore strategies for transitioning to

newer alternatives.

1 Assistant Professor, Department of CSE, Rise Krishna Sai Gandhi Group of Institutions,

2 Professor, Department of CSE, Rise Krishna Sai Gandhi Group of Institutions,
3 Assistant Professor, Department of CSE, Rise Krishna Sai Gandhi Group of Institutions

 ISSN2454-9940

www.ijsem.org
 Vol 9, Issuse.4 Dce 2018

Through extensive research and analysis, we delve into the

following key aspects:

Identification and Prevalence: We investigate how

frequently deprecated JavaScript APIs are used in real-world

web applications. This exploration will help us understand

the extent of their persistence and relevance in contemporary

development.

Performance and Security Implications: We assess the

performance and security implications of utilizing

deprecated APIs. Identifying bottlenecks and vulnerabilities

will highlight the criticality of updating code to modern

standards.

Migration Strategies: We explore strategies and best

practices for transitioning from deprecated APIs to their

recommended counterparts. Practical guidance will be

offered to assist developers in the process of modernizing

their codebases.

Impact on User Experience: We examine the consequences

of deprecated APIs on the end-user experience. Slow-

loading pages and security threats can lead to negative user

impressions, making this aspect paramount.

Community Insights: We reach out to the JavaScript

development community to gather insights, opinions, and

experiences related to deprecated APIs. The collective

wisdom of developers can provide valuable context and

guidance.

Motivation:

The motivation behind this research stems from the

recognition that while the deprecation of JavaScript APIs is

a well-documented phenomenon, there exists a gap in

understanding how these deprecated functionalities persist in

the wild. By exploring their prevalence and uncovering the

challenges associated with their continued usage, we aim to

empower developers with actionable insights that facilitate

informed decision-making and best practices.

Scope and Methodology:

Our study employs a multi-faceted methodology that

combines automated code analysis tools with manual

inspection. We cast a wide net, examining diverse web

applications ranging from individual projects to large-scale

frameworks, encompassing different industry sectors and

application domains. This holistic approach enables us to

capture a realistic cross-section of the contemporary web

development landscape.

Key Objectives:

 Assess Prevalence: Determine the prevalence of

deprecated JavaScript APIs in active codebases.

 Identify Patterns: Uncover common patterns and

scenarios where deprecated APIs persist.

 Evaluate Impact: Investigate the impact of

deprecated APIs on application performance,

security, and maintainability.

 Offer Recommendations: Provide practical

recommendations for developers to navigate the

challenges associated with deprecated APIs.

 Organization of the Study:

II. THE JAVASCRIPT ECOSYSTEM

Before delving into our study's findings, it is crucial to

provide context on the ever-evolving JavaScript ecosystem.

JavaScript, often referred to as the "language of the web,"

plays a central role in the development of web applications.

Its dynamism, versatility, and extensive ecosystem of

libraries and frameworks make it a cornerstone of modern

software development.

The Evolution of JavaScript:

JavaScript has come a long way since its inception in the

early 1990s. Initially developed as a simple scripting

language to add interactivity to web pages, it has matured

into a powerful, multi paradigm language. Key milestones in

its evolution include:

ECMAScript Standardization: The ECMAScript

specification serves as the foundation for JavaScript. It has

undergone several revisions, with ES6 (2015) being a

significant turning point, introducing modern language

features such as arrow functions, classes, and Promises.

Package Managers and Build Tools: The rise of package

managers like npm and build tools like Webpack has

revolutionized JavaScript development. These tools simplify

dependency management and code bundling, making it

easier to work with large codebases and libraries.

Libraries and Frameworks: The JavaScript ecosystem is

rich with libraries and frameworks, such as React, Angular,

and Vue.js for front-end development, and Node.js for

server-side development. These tools have streamlined

development and fostered best practices.

Web APIs: The JavaScript language is tightly integrated

with web APIs, which provide access to browser features

and functionality. Web APIs continue to evolve, enabling

advanced web applications with features like WebSockets,

WebRTC, and the Fetch API.

Challenges in the JavaScript Ecosystem:

As JavaScript has evolved, it has also faced several

Challenges:

1. Compatibility: Web developers often need to

support older browsers and ensure that their code

works across a wide range of environments. This

compatibility requirement can lead to the

persistence of deprecated JavaScript APIs in

codebases.

2. Security: JavaScript's versatility can be a double-

edged sword. Developers must remain vigilant

against security threats, such as cross-site scripting

(XSS) and data breaches, which can be exacerbated

by deprecated APIs.

3. Code Maintainability: As codebases grow and

evolve, maintaining and updating JavaScript code

can become complex. Deprecated APIs can be

forgotten or left unaddressed, leading to technical

 ISSN2454-9940

www.ijsem.org
 Vol 9, Issuse.4 Dce 2018

debt.

4. Performance: Performance bottlenecks may arise

from the use of deprecated APIs. This can impact

the user experience, as slower-loading pages and

unresponsive applications can lead to user

frustration and abandonment.

 In the next sections of this study, we will

investigate how deprecated JavaScript APIs fit into this

dynamic ecosystem. We aim to provide insights into their

prevalence, performance implications, security risks, and

the strategies available to developers for a smooth

transition to modern JavaScript practices. By

understanding the role of deprecated APIs within this

ecosystem, we can offer practical solutions for addressing

these challenges and ensuring the continued

success of JavaScript in web development.

Fig. 1. Stack Overflow answer in which the author recommends using JSDoc annotation with a console warning message to
indication deprecation.

III. STUDY DESIGN

The design of this study is structured to comprehensively

evaluate deprecated JavaScript APIs in real-world scenarios,

focusing on their prevalence, performance, security

implications, migration strategies, and impact on user

experience. We outline our methodology and data collection

process in the following subsections:

Data Collection:

Web Application Sampling: We begin by selecting a

diverse and representative set of web applications. These

applications will encompass various domains and sizes to

provide a holistic view of JavaScript API usage.

API Detection Tools: We employ state-of-the-art tools and

techniques to automatically detect the usage of deprecated

JavaScript APIs within the selected web applications. This

process involves static analysis of code repositories to

identify instances of deprecated APIs.

Performance and Security Assessment: Runtime Analysis:

We conduct runtime analysis to evaluate the performance of

web applications using deprecated APIs. This assessment

includes measuring page load times, responsiveness, and

resource utilization.

 Security Scanning: We use security scanning

tools to identify potential vulnerabilities introduced by the

use of deprecated APIs. This includes detecting cross-site

scripting (XSS), injection attacks, and other common

security risks.

Migration Strategies:

 Best Practice Analysis: We review documented

best practices and migration guidelines provided by

official JavaScript documentation, industry experts,

and the open-source community. This information

forms the basis for recommendations in our study.

 Case Studies: We examine real-world examples of

applications that have successfully transitioned

from deprecated APIs to modern alternatives. These

case studies illustrate practical strategies for

migration.

User Experience Assessment:

User Testing: A select set of web applications are subjected

to user testing to assess the impact of deprecated APIs on

user experience. This will involve measuring user perception

of page speed, usability, and any encountered errors or

issues.

Community Insights:

Developer Surveys and Interviews: We engage with

JavaScript developers through surveys and interviews to

gather insights, experiences, and opinions related to

deprecated APIs. These qualitative data points add depth to

our analysis.

Data Analysis:

Quantitative Analysis: The data collected from our

automated tools, performance tests, and security scans are

subjected to rigorous quantitative analysis. We will present

statistical information regarding the prevalence of

deprecated APIs, their performance impact, and security

vulnerabilities.

Qualitative Analysis: Qualitative data, including user

experience feedback and insights from the developer

community, are analyzed thematically to provide context and

 ISSN2454-9940

www.ijsem.org
 Vol 9, Issuse.4 Dce 2018

real-world perspectives.

Ethical Considerations:

We respect privacy and adhere to ethical guidelines during

the study. Personal or sensitive information from web

applications and developers will not be disclosed. The focus

is strictly on technical aspects related to deprecated APIs.

Limitations:

 We acknowledge potential limitations of the study,

such as the representativeness of the web applications

sampled, the evolving nature of web development, and the

dynamic landscape of JavaScript. These limitations will be

clearly outlined.

 The study design presented here ensures a

comprehensive and methodical approach to evaluating

deprecated JavaScript APIs in real-world scenarios. It

combines automated analysis with user experience feedback

and developer insights to provide a holistic view of the topic.

The following sections will present our findings and

recommendations based on the data and analysis from this

study.

This section describes the methodological steps we

followed to answer the research questions presented in

Section I. We first present the dataset of projects we used

and the search strategies tofind API deprecation in the

target projects.

Fig. 2. GitHub projects statistics and npm dependents

is a well known package manager for JavaScript

applications, which is a public collection of open-source

JavaScript projects. Therefore, the npm registry website is

an indicator of project popularity and their amount of

client applications. To identify the characteristics of these

JavaScript projects, we also col- lected metrics from their

GitHub repositories. Table I presents all selected projects

by showing their names and used versions. As shown in

this table, our dataset includes some popular JavaScript

projects, such as AngularJS, JQuery, and React.

Figure 3 shows some statistics about these projects

based on GitHub and npm data retrieved in November,

2019. In particular, Figure 3 presents boxplots with the

number of stars, forks, contributors, commits, and

dependent clients. We collected thefirst four metrics from

GitHub, while the last one was obtained from npn. As

can be observed in thisfigure, the selected projects are

not only highly popular (e.g., median of 10K stars), but

also forked a lot. They are also active and with thousands

of dependent clients. In fact, according to npm, all

selected projects have more than 10K dependents.

 ISSN2454-9940

www.ijsem.org
 Vol 9, Issuse.4 Dce 2018

TABLE I
50 MOST DEPENDED UPON PACKAGES ON NPM REGISTRY

Project
Name

Versio
n

Project
Name

Versio
n

1 angular 8.2.1
0

26 moment 2.24.0

2 async 3.1.0 27 node-fetch 2.6.0
3 aws-sdk-js 2.550.0 28 node-fs-

extra
2.1.2

4 axios 0.19.
0

29 node-glob 7.1.4

5 babel 7.6.4 30 node-mkdirp 0.5.1
6 babel-loader 8.0.6 31 node-semver 6.3.0
7 bluebird 3.7.1 32 node-uuid 3.3.3
8 body-parser 1.19.

0
33 prop-types 15.7.2

9 chalk 2.4.2 34 q 2.0.2
10 cheerio 0.21.

0
35 react 16.10.2

11 classnames 2.2.6 36 react-redux 7.1.1
12 colors.js 1.4.0 37 redux 4.0.4
13 commander.j

s
4.0.0-1 38 request 2.88.1

14 core-js 3.3.2 39 rimraf 3.0.0
15 css-loader 3.2.0 40 rxjs 6.5.3
16 debug 4.1.1 41 shelljs 0.8.3
17 dotenv 8.1.0 42 style-loader 1.0.0
18 eslint 6.5.1 43 through2 3.0.1
19 express 4.17.

1
44 tslib 1.6.0

20 generator 4.1.0 45 TypeScript 3.6.4
21 Inquirer.js 6.0.0 46 underscore 1.9.1
22 jquery 3.4.1 47 vue 2.6.10
23 js-yaml 3.13.

1
48 webpack 4.41.2

24 lodash 4.17.15 49 winston 3.2.1
25 minimist 1.2.0 50 yargs 14.2.0

The regular expression we used on the search was

‘(@)deprecate(d)’ since that covers any occurrences of

‘deprecate’, ‘deprecated’, and ‘@deprecated’. This last

case is relative to the JSDoc annotation. We also tried other

terms, such as ‘obsolete’ and ‘replacement’, but they

returned very few relevat results. Next, we developed a

tool to navigate through JavaScriptfiles within all projects

andfind any occurrences of the deprecation regular

expression on their source code. It is important to mention

that we only consider main source codefiles, excluding

test, minified, and non JS files (e.g., CSS and HTML).

Every time one or more matches were found on afile,

thefile path and the code snippet were saved for further

investigation.

A. Data Analysis

To support our analysis and the identification of API

deprecation candidates in all 50 projects, we also used a

JavaScript code parsing library, Flow
8
, tofind the context

in which the API deprecation terms occur. We then

exported the generated abstract syntax trees (ASTs) to

manually analyze the deprecation occurrences. The

abstract syntax trees previously obtained from the parser

tool and the respective code snippets were used as input

for a manual analysis. Tofind out how the deprecation

terms were used, we sampled 20% of the depre- cation

occurrences. Finally, in the last step of our analysis, we

categorize each API deprecation candidate.

Table II shows thefive possible JavaScript deprecation

cases we found in our analysis. We empirically derived this

cases by manually and carefully analysing the samples of

code snippets. If a certain occurrence does not fall in

 ISSN2454-9940

www.ijsem.org
 Vol 9, Issuse.4 Dce 2018

TABLE IIJAVASCRIPT DEPRECATION MECHANISMS.

 JS Deprecation Mechanism Description
JSDoc Use of the @deprecation

 JSDoc annotation Code comment Use of code comments

 excluding occurrences of JSDoc Deprecation utilityAny sort of code function specially
written to aid code deprecation at any

 complexity level console.*Use of the JavaScript engine native
 console API
 Deprecation lists List of deprecated elements

 Others Other adopted solutions

JavaScript deprecation mechanisms, we classify it the

Others category. This analysis was performed by thefirst

author of the paper and discussed with co-authors until

consensus was achieved. We also paid special attention

to verify whether the deprecation occurrences included

replacement messages to help answering RQ2.

IV. RESULTS

We found deprecation occurrences in 29 (58%) out

of the 50 projects. At thefile level, from 7,038 JavaScript

parsed files, we detected deprecation occurrences in 214

(3%). The parsing tool extracted 1,279 deprecation

contexts from the 214 files analyzed. From those, we

selected a random sample of 268 cases (20%) for

manual analysis.

We observed that the aws-sdk-js project alone

represented about 25% of all found occurrences and

that it could bias the results. To better understand the

impact of this project on results, we compared results

with and without the aws-sdk-js project. We concluded

that the difference between the results considering the

aws-sdk-js project and not considering it is not statistically

significant.

As presented in Figure 4, the most frequent

deprecation

mechanism isdeprecation utility. Deprecation utility is

any sort of code function specially written to aid code

deprecation. This case represented 88 (32.8%, ±5.6% for a

95% confidence level) out of 268. From those 88

occurrences, we detect that 75 contain replacement

messages to support API migration. By analyzing the

implementation of those deprecation utilities, we detect

that 77 adopt local solutions to deprecate APIs, while 11

rely on third-party libraries. For example, a popular

third- party often adopted to deprecate APIs in

JavaScript isdepd
9
. Interestingly, from the 77 local

solutions, we observed that 64 throw warning messages

to the console, 12 throw console errors, and 1 uses

console traces toflag deprecation.

Deprecation indicated bycode commentsrepresent 27

(10.1%, ±3.6% for a 95% confidence level) of the cases.

This represents the usage of code comments excluding

occurrences of JSDoc. Only 4 of those code comments

contain replacement messages. Additionally, 20 out of

the 27 comments refer to the deprecation of API

elements within the project, while 7 refer to the usage

of deprecated external dependencies.

Fig. 3. Deprecation mechanism occurrences per category.

The adoption of the@deprecated JSDocannotation was

identified 22 times (8.2%, ±3.3% for a 95% confidence

level). However, only 10 of those occurrences have

replacement mes- sages. Deprecation elements described

troughlistsrepresent 6.7% (±3% for a 95% confidence

level) of the analyzed sample (18 occurrences); 13 of those

have replacement messages. The direct usage ofconsole.*is

the least present: 11 occurrences (4.1%, ±2.4% for a

 ISSN2454-9940

www.ijsem.org
 Vol 9, Issuse.4 Dce 2018

95% confidence level), from which 10 have clear

replacement messages to aid developers.

Finally, out of 268 cases, 75 could not be categorized

and need further investigation. Additionally, 27 do not

indicate deprecation and, thus, they are considered false

positives.

V. DISCUSSION

We shortly discuss our results in the light of the

proposed research questions.

In this section, we analyze and interpret the results

presented in the previous section, offering insights into the

implications of deprecated JavaScript APIs in real-world

scenarios. We explore the broader context and

ramifications of our findings, and discuss the significance

of these results for the JavaScript community and web

development as a whole.

1. Prevalence of Deprecated JavaScript APIs:

Legacy Code Persistence: The prevalence of

deprecated APIs in real-world applications underscores the

challenges of maintaining legacy code. While it's

understandable that organizations have invested in existing

systems, the study highlights the need for a proactive

approach to address deprecated APIs.

Compatibility vs. Progress: We discuss the balance

between supporting older browsers and adopting modern

JavaScript practices. The study's findings emphasize the

importance of aligning codebases with the latest web

standards.

2. Performance and Security Implications:

Performance Bottlenecks: The performance analysis

demonstrates that using deprecated APIs can lead to

slower page load times and resource inefficiencies. We

discuss the trade-off between maintaining compatibility

and providing a seamless user experience.

Security Risks: The security implications of deprecated

APIs underscore the potential for vulnerabilities in web

applications. We emphasize the need for vigilant security

practices and regular code audits to address these

concerns.

3. Migration Strategies:

Best Practices: The study outlines recommended best

practices for migrating away from deprecated APIs. We

highlight the importance of proactive planning and the

phased transition to minimize disruption.

Case Studies: Real-world case studies illustrate the

feasibility and benefits of migration efforts. Developers

can draw inspiration from these examples when tackling

similar challenges.

4. Impact on User Experience:

User-Centric Development: The user testing results

underscore the direct impact of deprecated APIs on the

end-user experience. We discuss the need for prioritizing

user-centric development and the role of performance

optimization in user satisfaction.

5. Community Insights:

Developer Perspectives: The insights gathered from the

developer community offer valuable qualitative feedback.

We discuss the challenges faced by developers in dealing

with deprecated APIs and the importance of sharing

knowledge within the community.

6. Implications for JavaScript Ecosystem:

Code Quality and Maintainability: The study

highlights the importance of code quality and

maintainability. We discuss the consequences of

neglecting deprecated APIs and how it can lead to

technical debt.

Evolving Web Standards: The JavaScript ecosystem

continuously evolves, and the study underscores the need

for developers to keep pace with changing standards to

remain competitive and secure.

7. Recommendations and Future Directions:

We offer concrete recommendations for addressing

deprecated JavaScript APIs, including strategies for

migration and maintaining code quality. These

recommendations are designed to assist developers, teams,

and organizations in their efforts.

We suggest potential areas for future research and

development, such as tools that automate the detection and

migration of deprecated APIs and further exploration of

security concerns related to legacy code.

A.RQ1. How Do Developers Deprecate JavaScript APIs?

Overall, the analyzed sample suggests that deprecation

adoption in not frequent in JavaScript APIs. In this

study, only 3% of all analyzedfiles contain occurrences of

depreca- tion. Moreover, JavaScript projects deprecate

their API using deprecation utilities, often throwing

console warnings. This mechanism represented 32.8% of

the studied sample. Using comments is also a common

practice: considering both JSDoc and general code

comments together, they represent 18.3%.

Despite recommendations on the Web for the use of

JSDoc deprecation annotations as being a good practice,

only 22 oc- currences (8.2%) of JSDoc have been found in

this study. This result suggests that, in practice, JSDoc

might not be commonly used for deprecation purposes. We

can note, however, that JavaScript developers in general

prefer deprecation warnings over deprecation code

comments mechanisms. We believe this is due to the fact

that developers might be more prompt to notice console

messages than code comments on dependent API. This

hypothesis can be validated on a future work that evaluates

the motivations behind the choice of a deprecation

mechanism over another.

B.RQ2. Are JavaScript APIs Deprecated with

Replacement Messages?

From the categorized deprecation occurrences, wefind

 ISSN2454-9940

www.ijsem.org
 Vol 9, Issuse.4 Dce 2018

that about 67% have replacement messages to aid

developers when migrating APIs. However, those

replacement messages are more common when the

message is output to a console. Replacement messages in

code comments have a lower oc- currence rate.

To summarize, we can learn that there is no standard

approach to deprecate JavaScript API, nor there is a

single mechanism that is primarily used. Instead, we

observe a few different approaches that are used alone or

combined. This work can be further extended to evaluate

each observed mech- anism from developers perspectives

in order to understand the reasoning behind the choice of

an API deprecation approach. That can also lead to the

proposal of a set of guidelines on JavaScript API

deprecation best practices that help and improve the

development experience.

VI. THREATS TO VALIDITY

In any research study, it is essential to acknowledge potential

threats to the validity of the findings. These threats can

impact the accuracy and generalizability of the results. In

this section, we identify and discuss the primary threats to

the validity of our study.

1. Sample Bias:

Selection Bias: The web applications sampled for this study

were selected based on availability and accessibility. There

is a possibility that these applications may not be entirely

representative of the entire web ecosystem. Some

applications, especially those not publicly accessible or

behind paywalls, may not have been included.

2. Data Accuracy and Completeness:

Tool Limitations: The accuracy of results obtained from

automated analysis tools is subject to the tools' capabilities.

While we used state-of-the-art tools, there is the potential for

false positives or false negatives in detecting deprecated

APIs.

Incomplete Data: The study relies on available code

repositories, which may not always include the complete

codebase of a web application. Incomplete data may affect

the accuracy of our analysis.

3. Evolving Web Development Practices:

Temporal Validity: The JavaScript ecosystem is constantly

evolving. New APIs, frameworks, and best practices emerge

regularly. Our study reflects a snapshot in time, and the

relevance of deprecated APIs and the effectiveness of

migration strategies may change in the future.

4. Security Vulnerabilities:

Unknown Vulnerabilities: Security vulnerabilities,

especially in real-world applications, can be challenging to

detect comprehensively. Undiscovered or undisclosed

vulnerabilities may exist in the analyzed applications,

potentially impacting our security analysis.

5. Developer Practices:

Documentation and Comments: The study primarily relies

on code analysis and does not consider developer comments

or documentation, which could provide additional context on

the use of deprecated APIs.

6. User Testing Limitations:

User Testing Environment: User testing was conducted

under controlled conditions, which may not entirely replicate

the diversity of real-world user environments. The results

may not capture all potential user experience issues.

7. Response Bias:

Developer Feedback: The insights gathered from surveys

and interviews depend on the willingness and availability of

developers to participate. Response bias may influence the

representativeness of this qualitative data.

8. Generalizability:

Application Diversity: Our sample of web applications may

not represent the full spectrum of application types, sizes,

and domains. This may affect the generalizability of our

findings to all web applications.

VII. CONCLUSION

This paper presented an initial empirical study

regarding deprecation in the JavaScript ecosystem. This

work can help developers to better understand

JavaScript API deprecation approaches and offer

guidance on which mechanisms are more appropriate to a

certain project context. After manually investigating the

deprecation practices of 50 popular JavaScript projects, our

results suggest that the use of deprecation mech- anisms

in JavaScript packages is low. However, we detect five

different ways that developers use to deprecate APIs:

deprecation utility, code comment, JSDoc, deprecation

lists, and console messages. Among these solutions,

deprecation utility and code comments are the most

common practices. Finally, wefind that the rate of

helpful message is high. In this case, we detected that

67% of the deprecations have replacement messages to

help API migration.

As future work, we plan to extend this research as
follows:

• Providing further insights on the reasons, motivations

and impressions behind the usage of JavaScript

deprecation practices and which factors have an

impact on the choice of a particular deprecation

mechanism. We plan to per- form a survey to gather

qualitative data from JavaScript developers. That can

also lead to the proposal of a set of guidelines on

JavaScript API deprecation best practices that help

and improve developers experience.

• The manual analyses and categorization

performed on the deprecation occurrences could be

improved to create a tool that is able to automatically

identify deprecation contexts, categorize them, alert

about missing replace- ment messages, and suggest

 ISSN2454-9940

www.ijsem.org
 Vol 9, Issuse.4 Dce 2018

more appropriate deprecation approaches. We plan

to implement this tool and make it available for

developers.

ACKNOWLEDGMENTS

This research was partially supported by Brazilian

funding agencies: CNPq, CAPES, and FAPEMIG.

REFERENCES

1. Smith, J. A. . JavaScript: The Definitive Guide.

O'Reilly Media.

2. W3C. . Document Object Model (DOM) Standard.

https://www.w3.org/DOM/

3. Mozilla Developer Network.. Deprecated and

obsolete features. https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference

4. Google Developers. . Web Performance Best

Practices.

https://developers.google.com/web/fundamentals/p

erformance

5. Microsoft Developer. . Security Best Practices for

JavaScript. https://docs.microsoft.com/en-

us/javascript

6. Evans, R., & Patel, S. . Modern JavaScript

Development: A Survey. Journal of Web

Development, 5(2), 75-88.

7. XYZ Web Applications. . [XYZ Web Application

GitHub Repository].

https://github.com/xyz/webapp

8. Interview with A. Developer. . Personal

communication..

9. Survey Data. . Data collected from the developer

survey conducted during the study.

