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Abstract  

In this paper, we substantiate our premise that statistics is one of the most important disciplines to provide tools and 

methods to find structure in and to give deeper insight into data, and the most important discipline to analyze and 

quantify uncertainty. We give an overview over different proposed structures of Data Science and address the 

impact of statistics on such steps as data acquisition and enrichment, data exploration, data analysis and modeling, 

validation and representation and reporting. Also, we indicate fallacies when neglecting statistical reasoning.  
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Introduction and premise 

Data Science, as a field, is strongly influenced by 

multiple scientific disciplines, including informatics, 

computer science, mathematics, operations research, 

and statistics, along with various applied sciences. 

The term "Data Science" first appeared in the title of 

a statistical conference in 1996, but its public 

perception often emphasizes the roles of computer 

science and business applications, especially in the 

era of Big Data. 

The conceptual shift in statistics can be traced back to 

the 1970s when John Tukey's ideas redirected the 

focus from purely mathematical statistical testing to 

understanding data before hypothesis formation, i.e., 

exploring data. Another foundational aspect of Data 

Science is rooted in Knowledge Discovery in 

Databases (KDD) and its subfield Data Mining, 

which brings together diverse approaches such as 

inductive learning, Bayesian statistics, query 

optimization, expert systems, information theory, and 

fuzzy sets. 

The contemporary notion of Data Science integrates 

these ideas, resulting in various definitions. Cao's 

comprehensive formulation for Data Science 

encompasses multiple disciplines including statistics, 

informatics, computing, communication, sociology, 

and management, all acting in conjunction with data, 

the environment, and a data-to-knowledge-to-wisdom 

thought process. 

 

 

1
 Assistant Professor, Department of CSE, RISE Krishna Sai Gandhi Group of Institutions, Ongole, 

2
 Professor, Department of CSE, RISE Krishna Sai Gandhi Group of Institutions, Ongole, 

3 
Assistant Professor, Department of CSE, RISE Krishna Sai Gandhi Group of Institutions, Ongole. 

 

 

 

 



                                   ISSN2454-9940 
www.ijsem.org 

                                       Vol 9, Issuse.4  Dce  2018 
 
A comprehensive overview of Data Science by 

Donoho in 2015 traces its evolution from statistics. 

There have been radical views suggesting a renaming 

of statistics to Data Science, highlighting the 

centrality of statistics and machine learning in this 

domain, as emphasized by ASA leaders in 2015. 

In this context, statistical methods are essential in 

numerous key stages of Data Science. Therefore, our 

primary assertion is that statistics plays a pivotal role 

in providing tools and methodologies to uncover 

patterns and gain deeper insights from data, serving 

as the most crucial discipline in analyzing and 

quantifying uncertainty. 

This paper intends to delve into the significant 

influence of statistics on the critical steps involved in 

the practice of Data Science. 

Steps in Data Science 

Two fundamental models have influenced the 

structural framework of Data Science: CRISP-DM 

(Cross Industry Standard Process for Data Mining) 

and an expanded perspective. CRISP-DM, organized 

into six key steps—Business Understanding, Data 

Understanding, Data Preparation, Modeling, 

Evaluation, and Deployment—is now integral to 

applied statistics. 

In our conceptualization, inspired by CRISP-DM, the 

steps in Data Science have evolved. Our definition 

presents Data Science as a sequence of steps: Data 

Acquisition and Enrichment, Data Storage and 

Access, Data Exploration, Data Analysis and 

Modeling, Optimization of Algorithms, Model 

Validation and Selection, Representation and 

Reporting of Results, and Business Deployment of 

Results. Steps denoted in small capitals in Table 1 

represent areas where statistics plays a relatively 

lesser role. 

Typically, these steps are not linear but rather 

iterative in a cyclical loop. Furthermore, it is 

common to alternate between two or more steps. This 

especially applies to Data Acquisition and 

Enrichment, Data Exploration, and Statistical Data 

Analysis, as well as Statistical Data Analysis and 

Modeling, and Model Validation and Selection. 

The table presents a comparison of different 

definitions of steps in Data Science. The relationships 

between terms are represented by horizontal blocks. 

The absence of the Data Acquisition and Enrichment 

step in CRISP-DM indicates that the scheme 

primarily deals with observational data. Additionally, 

we propose to expand CRISP-DM by including Data 

Storage and Access and Optimization of Algorithms, 

where statistics plays a relatively lesser role. 

The steps for Data Science can be expanded further, 

as seen in Cao's work, which adds elements such as 

Domain-specific Data Applications and Problems, 

Data Storage and Management, Data Quality 

Enhancement, and more. 

While Cao’s formulation aligns with our proposal in 

principle, it provides more detailed descriptions. For 

instance, our step 'Data Analysis and Modeling' 

corresponds to 'Data Modeling and Representation, 

Deep Analytics, Learning, and Discovery' in Cao’s 

work. It is important to note that the vocabulary 

might slightly differ depending on whether the 

background is in computer science or statistics. For 

instance, 'Experiment Design' in Cao’s definition 

refers to the design of simulation experiments. 

In the subsequent sections, we will emphasize the 

role of statistics in all the steps where it is 

significantly involved. This corresponds to all steps 

in our proposal in Table 1, except for the steps 

denoted in small capitals. 

Steps CRISP-DM Cao's Definition
Proposed 

Framework

Business Understanding
Business 

Understanding

Domain-specific Data 

Applications and Problems

Business 

Deployment of 

Results

Data Understanding Data Understanding Data Storage and Management

Data 

Acquisition 

and 

Enrichment

Data Preparation Data Preparation Data Quality Enhancement
Data Storage 

and Access

Modeling Modeling
Data Modeling and 

Representation

Data 

Exploration

Evaluation Evaluation
Deep Analytics, Learning, and 

Discovery

Data Analysis 

and Modeling

Deployment Deployment
Simulation and Experiment 

Design

Optimization 

of Algorithms

High-performance Processing 

and Analytics

Model 

Validation and 

Selection

Networking, Communication

Representation 

and Reporting 

of Results

Data-to-Decision and Actions
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Entries Data Storage and Access and Optimization of 

Algorithms are mainly covered by informatics and 

computer science.  

1.Data acquisition and enrichment 

Experimental design, commonly known as Design of 

Experiments (DOE), is a critical component for 

systematically generating data, especially when the 

impact of extraneous factors must be identified. 

Controlled experiments serve as the bedrock of 

robust process engineering, ensuring the production 

of dependable products despite variations in process 

variables. While controllable factors inherently carry 

some uncontrollable variations influencing the 

response, certain factors, such as environmental 

influences, remain beyond control. Employing DOE 

is essential for managing the impact of such noisy 

factors. 

DOE finds application in various areas such as the 

systematic generation of new data for data 

acquisition, the systematic reduction of databases, 

and the optimization of algorithm parameters to 

enhance data analysis methods. Simulations also play 

a role in generating new data, while imputation of 

missing data serves as a valuable tool for enriching 

databases and filling data gaps. 

These statistical techniques for data generation and 

enrichment should form an integral part of the 

foundation of Data Science. Relying solely on 

observational data without controlling for noise 

significantly undermines the quality of data analysis 

results and may lead to erroneous interpretations. The 

notion of "The End of Theory: The Data Deluge 

Makes the Scientific Method Obsolete" seems 

flawed, as the presence of noise in the data 

necessitates the continued importance of 

experimental design. 

Therefore, the integration of experimental design is 

indispensable for ensuring the reliability, validity, 

and replicability of our research findings. 

 2 Data exploration 

Exploratory statistics plays a crucial role in data 

preprocessing by enabling an understanding of the 

underlying content within a database. The practice of 

exploring and visualizing observed data finds its 

roots in the pioneering work of John Tukey. Over 

time, the process of comprehending and transforming 

data, which constitutes the most labor-intensive 

aspect of data analysis, has emerged as a significant 

component of statistical science. 

In the realm of Data Science, data exploration and 

data mining are pivotal for ensuring the appropriate 

application of analytical methods. Among the most 

significant contributions of statistics is the concept of 

distribution. This concept not only facilitates the 

representation of variability within the data but also 

aids in the incorporation of a priori knowledge of 

parameters. This foundational idea serves as a critical 

underpinning for various statistical analyses. 

       

3 Statistical data analysis 

Finding structure in data and making predictions are 

the most important steps in Data Science. Here, in 

particular, statistical methods are essential since they 

are able to handle many different analytical tasks. 

Important examples of statistical data analysis 

methods are the following. 

 

Hypothesis testing 

Hypothesis formulation stands as a fundamental 

pillar of statistical analysis. Often, queries arising in 

data-driven predicaments can be translated into 

hypotheses, serving as the bridge connecting 

underlying theories to statistical analyses. Statistical 

hypotheses, closely intertwined with statistical tests, 

enable the scrutiny of questions and theories based on 

available data. However, the recurrent use of the 

same data in various tests necessitates the adjustment 

of significance levels. In the realm of applied 

statistics, the proper handling of multiple testing 

assumes paramount importance. This is particularly 

evident in domains such as pharmaceutical studies. 

Disregarding such corrective techniques would likely 

result in an inflated number of statistically significant 

findings, surpassing what is truly warranted. 
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Classification 

In data analysis, methods for identifying and 

predicting subpopulations play a fundamental role. In 

the unsupervised scenario, these subpopulations are 

identified from a dataset without any prior knowledge 

about their existence, often referred to as clustering. 

Conversely, in the supervised setting, the objective is 

to derive classification rules from labeled datasets for 

predicting unknown labels based on influential 

factors. 

In contemporary times, a wide array of methods 

exists for both unsupervised  and supervised  cases. 

However, the era of Big Data demands a fresh 

perspective on classical techniques, as the 

computational effort of complex analysis methods 

often grows more than linearly with the number of 

observations (n) or features (p). This situation 

becomes challenging when dealing with extensive 

datasets, resulting in prolonged computation times 

and numerical challenges. Consequently, there is a 

renewed focus on simpler optimization algorithms 

with lower time-complexity, alongside a reevaluation 

of traditional statistical and machine learning 

methods to address the challenges posed by Big Data. 

 Regression 

Methods serve as the primary tool for uncovering 

global and local relationships between features when 

the target variable is under measurement. The choice 

of approach typically hinges on the distributional 

assumptions concerning the underlying data. In 

instances where the data adhere to the normality 

assumption, linear regression stands as the most 

prevalent method, while distributions from the 

exponential family often necessitate the application 

of generalized linear regression. More sophisticated 

techniques encompass functional regression for 

functional data , quantile regression, and regression 

based on alternative loss functions, such as Lasso 

regression, which deviates from the typical squared 

error loss. 

When confronted with the challenges posed by Big 

Data, similar considerations to those in classification 

methods arise, primarily due to the substantial 

number of observations (n), as seen in data streams, 

and/or the presence of a high number of features (p). 

To tackle the reduction of n, expedited computation 

is made possible through data reduction techniques 

like compressed sensing, random projection methods 

, or sampling-based procedures. Likewise, for the 

reduction of p to the most influential features, 

variable selection or shrinkage approaches such as 

the Lasso  can be utilized, thereby preserving the 

interpretability of the features. Additionally, (sparse) 

principal component analysis serves as another viable 

option. 

Time series analysis 

Forecasting and understanding temporal structures 

constitute essential tasks in data analysis. Time series 

data are prevalent in various studies involving 

observational data, with prediction emerging as a 

critical challenge in this context. Fields such as 

behavioral sciences, economics, natural sciences, and 

engineering commonly employ time series analysis. 

For instance, in signal analysis, such as the study of 

speech or music data, statistical methods encompass 

the examination of models within the time and 

frequency domains. The primary objective often 

revolves around predicting future values of the time 

series itself or its properties. For example, modeling 

the vibrato of an audio time series allows for a 

realistic prediction of future tones , while rules 

learned from past time periods can predict the 

fundamental frequency of a musical tone . 

In econometrics, the analysis often involves multiple 

time series and their co-integration. Time series 

analysis also finds common application in technical 

domains, particularly in process control. 

4 Statistical modeling. 

a) Complex interactions between factors can be 

modeled by graphs or networks. Here, an interaction 

between two factors is modeled by a connection in 

the graph or network. The graphs can be undirected 

as, e.g., in Gaussian graphical models, or directed as, 

e.g., in Bayesian networks. The main goal in network 

analysis is deriving the network structure. 

Sometimes, it is necessary to separate (unmix) 

subpopulation specific network topologies .  
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(b) Stochastic differential and difference equations 

can represent models from the natural and 

engineering sciences. The finding of approximate 

statistical models solving such equations can lead to 

valuable insights for, e.g., the statistical control of 

such processes, e.g., in mechanical engineering . 

Such methods can build bridge between the applied 

sciences and Data Science. 

 (c) Local models and globalization Typically, 

statistical models are only valid in sub-regions of the 

domain of the involved variables. Then, local models 

can be used. The analysis of structural breaks can be 

basic to identify the regions for local modeling in 

time series. Also, the analysis of concept drifts can be 

used to investigate model changes over time. In time 

series, there are often hierarchies of more and more 

global structures. For example, in music, a basic local 

structure is given by the notes and more and more 

global ones by bars, motifs, phrases, parts etc. In 

order to find global properties of a time series, 

properties of the local models can be combined to 

more global characteristics. Mixture models can also 

be used for the generalization of local to global 

models. Model combination is essential for the 

characterization of real relationships since standard 

mathematical models are often much too simple to be 

valid for heterogeneous data or bigger regions of 

interest. 

5 Model validation and model selection 

In scenarios where multiple models are proposed, 

statistical tests for model comparison serve a crucial 

role in evaluating and structuring these models, 

particularly with respect to their predictive 

capabilities. The assessment of predictive power 

commonly relies on resampling methods, wherein the 

distribution of power characteristics is studied by 

systematically altering the subpopulation used for 

model learning. Characteristics derived from these 

distributions are then employed for model selection. 

Perturbation experiments offer an alternative means 

of evaluating model performance by assessing the 

stability of different models in the face of noise. 

Additionally, meta-analysis and model averaging 

represent methodologies for assessing combined 

models. 

Over the years, model selection has gained increasing 

importance, especially considering the rapid 

proliferation of classification and regression models 

within the academic literature. 

6 Representation and reporting 

In statistical analyses, visualization plays a crucial 

role in interpreting discovered structures, while 

storing models in a readily updatable format is 

essential for effective communication of results and 

ensuring the safe deployment of data analysis. The 

deployment phase holds significant importance in 

Data Science as it serves as the final step in the 

CRISP-DM framework and underlies the crucial 

data-to-decision and action step outlined by Cao. 

In addition to visualization and appropriate model 

storage, a primary task for statistics involves the 

reporting of uncertainties and undergoing thorough 

reviews. 

 Fallacies 

The statistical methodologies delineated in Section 2 

play a foundational role in identifying underlying 

structures within data, facilitating a more 

comprehensive understanding, and thus contributing 

to the efficacy of data analysis. Disregarding 

contemporary statistical practices or resorting to 

simplistic data analytics/statistical methods may lead 

to avoidable inaccuracies, especially when dealing 

with complex and voluminous datasets. 

As highlighted towards the end of Section 2.2, the 

concept of distribution stands as a pivotal 

contribution of statistics. Overlooking the role of 

distributions in data exploration and modeling 

confines us to reporting mere values and parameter 

estimates without accounting for their inherent 

variability. It is only through a grasp of distributions 

that we can make predictions along with their 

corresponding error margins. 

Furthermore, distributions form the bedrock of 

model-based data analytics. For instance, 

unsupervised learning aids in the discovery of data 

clusters. When additional structural dependencies 

such as space or time come into play, inferring 
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parameters like cluster radii and their spatio-temporal 

evolution becomes crucial. Such model-based 

analyses heavily rely on an understanding of 

distributions, as demonstrated in applications such as 

the study of protein clusters. 

When multiple parameters warrant attention, it is 

advisable to compare univariate hypothesis testing 

approaches with multiple procedures, particularly in 

scenarios like multiple regression, and select the most 

appropriate model through variable selection. 

Confining analyses to univariate testing would 

overlook the relationships that exist between 

variables. 

Gaining deeper insights into data often necessitates 

the utilization of more complex models, such as 

mixture models, for identifying heterogeneous groups 

within the data. Disregarding such complexities often 

results in a meaningless average, calling for the need 

to discern subgroups through the separation of 

components. Within a Bayesian framework, this is 

facilitated by latent allocation variables in a Dirichlet 

mixture model, as demonstrated in applications 

involving the decomposition of a mixture of various 

networks in a heterogeneous cell population within 

molecular biology. 

A mixture model can represent combinations of 

components with significantly unequal sizes, where 

small components (outliers) hold particular 

significance. In the context of Big Data, simplistic 

sampling procedures are frequently utilized for model 

estimation, despite the inherent risk of overlooking 

small mixture components. Consequently, model 

validation, the adoption of more suitable distribution-

based sampling, and the use of resampling methods 

for predictive power assume critical importance. 

Conclusion 

Following the above assessment of the 

capabilities and impacts of statistics our 

conclusion is: The role of statistics in Data 

Science is under-estimated as, e.g., compared to 

computer science. This yields, in particular, for 

the areas of data acquisition and enrichment as 

well as for advanced modeling needed for 

prediction. Stimulated by this conclusion, 

statisticians are welladvised to more offensively 

play their role in this modern and well accepted 

field of Data Science. Only complementing 

and/or combining mathematical methods and 

computational algorithms with statistical 

reasoning, particularly for Big Data, will lead to 

scientific results based on suitable approaches. 

Ultimately, only a balanced interplay of all sciences 

involved will lead to successful solutions in Data 
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