

 ISSN2454-9940

www.ijsem.org
 Vol 13, Issuse.2 May 2022

The SOFTmon Network for Software-Defined NetworksMr.K

Lakshmaiah,.D Sanjeeva Reddy , Assistant Professor ,Mr.M Veeresh Babu

ABSTRACT

The foundational enabler for network virtualization is the software-defined networking (SDN) substrate.

They provide many opportunities but need novel approaches to addressing established, long-standing

problems. Accordingly, in this research, we provide a novel network monitoring tool that is compatible with

the standard, commercially-available Open Flow controllers. The provided instrument offers usage charts

and data up to a flow level, hence extending the controller monitoring capabilities. The tools' architecture

and implementation will be presented with the feature set.

1. Introduction

The monitoring of computer networks has been an

essential part of performance management ever

since their inception. To assess the state of a

network, it is required to isolate critical status

parameters. Monitoring a network entails keeping

close tabs on a number of metrics, such as the

percentage of available bandwidth and the delay

between individual nodes. In addition, node-based

characteristics, like as connection failures and

packet losses, are critical in determining whether or

not the network is operating normally. Avoiding

congestion and finding architectural bottlenecks are

both made easier with network monitoring.

Physical problems, such as severed cables or down

computing and network nodes, may also be

detected and fixed rapidly. These instances

highlight why network monitoring is crucial. The

complexity and size of modern networks need

constant monitoring. In particular, it is crucial to

have a cutting-edge monitoring solution due to the

increasing complexity of data centers and networks

generally. Moreover, virtualization based on CC

and the SDN paradigm is constantly redefining the

difficulties of network monitoring. Consequently,

we'd like to provide SOFTmon, our free and open-

source SDN monitoring application. With the help

of this utility, you may get an advanced monitoring

solution that works with any Network Operating

System (NOS). As a result, it enhances the

capabilities of traditional NOS-based monitoring

by adding graphical transmission charts that

provide a wide range of usage data at the switch,

port, and flow levels. For example, it enables the

possibility of differentiating between many IP-

related flows and their burden in the context of the

entire network's use and capabilities. This Section

of the paper is organized as follows. Some

Context is provided and relevant work is described

in Section 2. Section 3 describes the structure of

the tool, while Section 4 details a prototype

implementation. Section 5 provides an assessment,

while Section 7 provides a quick summary. Second,

context and related studies In general, monitoring

is a subject that should not be taken lightly.

Multiple mechanisms are often used to keep an eye

on a network. Internet Control Message Protocol

(ICMP) host-based latency measures and Simple

Network Management Protocol (SNMP) network-

node-based inquiries are two such examples. These

applications, however, need decentralized

configuration and testing. As a result, a centralized

monitoring server component is essential, such as

Zabbix1 or Nagios2. This monitoring server

compiles, analyzes, and displays data on a regular

basis. Technologies like the Open Flow protocol

give and support direct access to the network nodes

and other statistics, allowing for the use of these

methods in SDN networks as well. Therefore, an

SDN-based monitoring system would be more

robust and would provide a great deal of additional

opportunities to capture network information, such

as various flow statistics that can be directly

accessed from the flow tables of the switches.

Associate Prof1 , Assistant Professor, Assoc Prof
Department of CSE,

Viswam Engineering College (VISM) Madanapalle-517325 Chittoor District, Andhra Pradesh, India

 ISSN2454-9940

www.ijsem.org
 Vol 13, Issuse.2 May 2022

Moreover, Open Flow managed switches typically

report any network status changes like e.g. a failed

link status, instantly to the NOS. They also

exchange frequent keep alive messages with the

NOS in order to determine the network status as a

whole. On the other hand, the NOS are frequently

using a mechanism similar to the Link Layer

Discovery Protocol (LLDP) to obtain the current

network topology and the regarding interconnects.

Furthermore, the NOS can be triggered to query the

network nodes via the Open Flow protocol in order

to obtain the flow tables, flow entries, as well as

their counters and statistics. This particular

mechanism is utilized by SOFTmon to provide a

very fine granular flow-based monitoring solution.

There are several open source Open Flow based

SDN NOS available. OpenDaylight3 and

Floodlight4 for instance, are very common at the

moment. As previously mentioned, they generally

support basic monitoring capabilities like the

visualization of network topology or the flow

statistics in a tabular representation. Nevertheless,

the presentation of this information can be evolved,

since it is not really human readable neither it

provides an appropriate understanding of the

current network utilization. Thus, several papers try

to address this issue with proposals and approaches

for SDN based network monitoring5, 6, and 7.

However, almost all of them mainly deal with

different measurement approaches and procedures

in order to increase the measurement accuracy

concerning time. On the other hand, some papers8,

9 present controller module extensions, which are

bound to particular NOS and interact directly with

the packet forwarding process. Others again,

describe just some early work prototypes10, which

are not available for testing or downloading. In

contrast, the presented SOFTmon tool presented in

this paper introduces a method of flow monitoring

using the northbound NOS interface. The tool is

completely decoupled from other network or

software components and acts as an additional

utility to observe the network utilization.

Furthermore, the prototype implementation

including the Floodlight connector is available on

GitHub11.

Architecture

SOFTmon's fundamental concept is to provide a

NOS-independent traffic monitoring application

that delivers supplementary monitoring features

and a clear presentation of those features. As a

result, SOFTmon employs a technique for traffic

measurement that depends only on the switch, port,

and flow data established by the Open Flow

standard and available through query by any

standard NOS. As shown in Figure 1(a) and

explained in12, SOFTmon is a business application

that operates at the network application layer of the

SDN paradigm. It does this by way of the

platform's own application programming interface

(API), which communicates with the northbound

NOS interface.

Figure 1: Buildings SOFTmon follows the pattern

of layered software architecture in its own

conceptual design. Database, file I/O, and

representational state transfer (REST) capabilities

are all part of the data access layer, the foundation

of the stack. This layer provides the fundamental

capabilities necessary for interaction with the NOS.

Northbound API13 that conforms to the REST

paradigm is provided by the vast majority of open

source NOS implementations, making it possible

for network applications to be written in any

language. As a result, this interface was chosen to

serve as a bridge between SOFTmon and the NOS.

Since there is now no common NOS northbound

API, REST seems to be the most convenient

technique to integrate new NOS connections with

different network controllers. In order to describe

the methods and data model that must be offered by

a certain communication module for the related

NOS implementation, SOFTmon's design includes

an abstraction layer called REST connector. The

data model is part of the next higher level. The

NOS statistics are used by the data model to

 ISSN2454-9940

www.ijsem.org
 Vol 13, Issuse.2 May 2022

calculate the performance metrics. Once again, the

NOS got these details from the network nodes

through Open Flow. However, there are primarily

three parts to the data model. Let's start with the

topology. It consists of all the switches in a

network and the wiring between them. It also has

the counters that are keeping track of the statistics.

Metrics are the last component. In order to see how

well a network is doing, they are essential. Open

Flow v1.3 provides the foundation for the object

model used to describe the network's topology and

counter objects. The specific REST client of the

data access layer is responsible for providing the

functionality necessary to convert the data model

retrieved from the NOS non-standardized REST

API into the SOFTmons data model. The graphical

user interface (GUI) for data visualization and user

interaction is located in the uppermost layer. There

are tabs where you can choose how you want to

measure things, buttons to initiate and terminate the

visualization, and a chart component to display the

performance metrics in near real time. The

SOFTmon team has relied on a simulated testing

environment built with the Mininet15 network

emulator and the Floodlight4 SDN controller. This

development setup consists of two VMs running

Ubuntu 14.04 Linux as guests in VMware

Workstation, which is installed on a computer

running Windows 7 Professional as the host

operating system. Mininet simulator is installed on

the first virtual machine. Figure 1(b) depicts the

tree topology used to organize Mininet, which has a

depth of two and a fan-out of three. This method

was used often during development to achieve

consistent NOS return results. While development

took place on a Windows host system using Java

and the Eclipse IDE, the NOS itself was encased in

a second virtual machine (VM).

4. Implementation

The complete software system may be developed

incrementally and modularly thanks to the design

outlined in section 3. SOFTmon's monitoring

capabilities are, however, limited by the data

available via the NOS's Restful interface. It is

important to develop the related REST client in

order to incorporate a certain NOS. The prototype

of SOFTmon is compatible with Floodlight. While

the uniform resource identities (URIs) for each

every Floodlight REST call16 are described in full,

the data model for the JSON structure that is

returned is not. As a result, it was necessary to use

reverse engineering and probes in order to ascertain

the data model. The REST client implementation

may end up being the most difficult and time-

consuming aspect of future NOS support. The

quality of the documentation for the NOS REST

API is crucial to this.

 Table 1. Indicators and underlying measurements

The Open Flow v1.3 port and flow data are used in

the computation of the performance metrics. The

computed metrics and their corresponding counters

are shown in Table 4. While the NOS are

responsible for aggregating data, the values

represented by the switch counters are not. Time-

dependent performance metrics m (t) may be

derived from their associated time-dependent

counters c (t):

Counter values are available only in time-discrete

form. Thus, the calculation of a metric can be

approximated by using the corresponding time

interval _t:

The Open Flow specification defines duration

counters for port statistics, as well as flow statistics

(since Open Flow version 1.3), which could be

used as a time base for the time-dependent counter

values. This would help to achieve measurements

with a theoretical accuracy up to one nanosecond.

However, the counter for the nanosecond portion of

the duration is marked as optional in the Open

Flow specification. Thus, the maximum feasible

and guaranteed time resolution is one second. In

addition, the port duration counters do not exist in

earlier Open Flow versions.

Unfortunately, one second is not sufficient to

achieve a fluent visualization in soft real time. The

solution for this issue is to create an additional time

base by generating and adding a system time stamp

to the counter values based on the arrival time of

the corresponding JSON object received from the

NOS. This is also necessary for adding the

 ISSN2454-9940

www.ijsem.org
 Vol 13, Issuse.2 May 2022

functionality of presenting historical values. The

resulting error of the time stamp approach will be

analyzed in detail in section V.

Fig. 2. SOFTmon GUI Figure 2 presents an

overview of SOFTmon’s graphical user interface

on a Windows 7 OS. The parameters and

credentials for the REST connection and the

regarding NOS can be configured in the upper left

area. To the right is another area where the

refreshing time and the amount of values for the

visualization can be adjusted. The tree view on the

left allows choosing different points of

measurement dependent on the selected tab. The

tree view also reflects the network topology, while

the tabs allow switching the presentation according

to the ports per switch, the flows per switch or the

switch interconnects. Further details of the selected

sample are displayed on the lower left side,

whereas the sample is presented as a chart on the

right side. The Open Flow based statistics values

are monitored in soft real time. In order to measure

the network utilization caused by a particular flow,

some effort has to be spent in filtering the flow

tables of a certain switch and locating the statistic

entries of interest. The Floodlight REST interface

only allows querying the complete list of all flows

in all flow tables of a certain switch at once. This

list is arranged by the table ID and the processing

sequence of each table regarding the switch’s

matching process. The current Softmax prototype

only supports flow monitoring for the network

layer. This means in order to become a selectable

item in the SOFtmon GUI, a flow needs to have

valid entries in the fields IPv4 source and

destination address as well as Ethernet source and

destination address. Further, the instruction field

must contain a valid action. However, flows are

installed and deleted dynamically by the

Floodlight’s Learning Switch module. Thus, flow

list obtained by the NOS and its flow statistics can

differ in length and sequence from one

measurement cycle to the subsequent one.

Therefore, the flow that is selected for monitoring

has to be identified in the list through an internal

matching process in which the following fields are

compared: flow table ID, IPv4 source and

destination address, Ethernet source and destination

address, Ethernet type, IP protocol, transport

protocol source and destination port and physical

input port. Not mandatory

 Values (e.g. transport protocol ports) are

substituted by a wildcard for the search process. In

order to not disrupt a flow’s utilization

visualization metrics when it has been deleted, the

statistic values of a missing flow are marked as

invalid. This causes the calculation module to

return zero as a value. Therefore the graph of the

measured metric drops also to zero, but is

continued to be drawn until the selected flow is

probably active again. The GUI elements that can

be selected for monitoring are: switches, switch

ports, and flows. They are presented in a tree

structure corresponding to the network’s topology.

Since flows can be installed and deleted within

short time frames, this tree structure for selecting

the measurement has to be updated manually by the

user. The visual presentation of a metric is

implemented with the JChart2D library17. It is

intended especially for engineering tasks and

therefore optimized for the dynamic and precise

visualization of data with a minimal configuration

overhead. The user can configure the duration of a

measurement cycle dM, as well as the amount of

values displayed in a graph NM via the GUI.

5. Evaluation

 In order to determine the error that emerges from

the proposed and implemented system time stamp

approach to label the probes, as described in

section IV, the deviation of a switch port metric m

(_its) is measured. This metric is calculated for a

time interval _its based on the time stamps for the

metric m (_tC), which again is calculated for the

time interval _tC of the time counters. As shown in

table 2, the experimental evaluated and calculated

relative deviation of the time interval increases

slightly with a decreasing duration of the

measurement cycle dM. In contrast, the mean

deviation of the calculated metric is constantly

lower than 0,005 percent.

Table 2. Empirical identified error with time stamp

approach

The mean REST call execution time dR of the test

system results in comparatively constant values

between ap-proximately five and seven

milliseconds with regard to the measurement cycle

 ISSN2454-9940

www.ijsem.org
 Vol 13, Issuse.2 May 2022

dM. However, there is an offset dO from the instant

of time tS based on time stamps to the instant of

time Tc based on time counters. This offset has an

averages time of around 25 milliseconds. That

means, the metrics that are obtained from the NOS

are visualized and displayed around 25

milliseconds later than they actually occur. This is

negligible for the applicability as network

monitoring tool. In a nutshell, the obtained results

demonstrate that even commodity hardware is able

to deliver a sufficient sample rate and resolution for

the usage of SOFTmon. In addition to the Mininet

based development environment presented in

section III, SOFTmon was also intensively

evaluated on a local SDN research cluster. This

cluster is named Asok and has a typical SDN

enabled data center fat tree network topology. The

SDN network is composed out of dedicated Open

Flow switches from NEC. Table 3 lists all

components and their hardware and software

specifications as used for the cluster based

evaluation.

Table 3. Asok Cluster Hardware Configuration

In order to evaluate the monitoring performance

with SOFTmon, network traffic was generated

using the iperf tool18. Figure 3(a) depicts the

evaluation deployment as well as the iperf server

and client configuration. The NOS

Fig. 3. Evaluation on a SDN cluster and the

SOFTmon application are running on dedicated

nodes, which are not directly part of the cluster.

They are not connected to the SDN data network,

but to the separated management network via

1Gbps Ethernet. This network is used for the NOS

to switch communication and vice versa. Figure

3(b) shows port traffic probes that were collected

with SOFTmon on the cluster. It shows the

throughput as byte and packet rate. This particular

example was generated with the iperf setup that

previously has been introduced and described. The

iperf clients were configured to use a to 100Mbit/s

limited transmission rate in order to avoid traffic

congestion. The graph depicted in figure 3(b),

shows the measured and visualized throughput on

port 19 of switch nec1-1. This is the incoming

(RX) traffic from client asok04, which reaches an

averages of 12, 5 MByte/s. This correlates with the

configured 100 Mbit/s transmission rate. Moreover,

the graph on the right shows the outgoing (TX)

throughput of port 18 of switch nec3-1 which is the

sum of the iperf traffic of all three clients (asok04

to asok06) that was started successively. The traffic

that was limited to 100 Mbit/s per client reaches an

average overall amount of 37, 5 MByte/s, which

again correlates to the configured 300 Mbit/s

transmission rate. For further evaluation of

SOFTmon under real traffic conditions, the

development environment, as introduced by fig.

1(b), was used for video streaming experiments.

The charts that are presented in 4 were collected

while retrieving a video live stream with a web

browser that was started on a virtual host in the

Mininet environment. The curves are showing data

bursts which are typical for video streaming.

Fig. 4. Port and flow metrics with Youtube traffic

evaluated on Mininet All charts that are presented

in this paper are screenshots of the current version

 ISSN2454-9940

www.ijsem.org
 Vol 13, Issuse.2 May 2022

of the SOFTmon tool. They reflect samples taken

during the evaluation and validation process.

 6. Disclosure

This work was supported by a fellowship within

the FITweltweit programmed of the German

Academic Exchange Service (DAAD).

7. Conclusion

This new monitoring tool offers a fresh method for

keeping tabs on Open Flow networks. It may be

used to identify any form of network activity and

expands on the topology-based monitoring

capabilities offered by standard NOS. The code for

the implementation may be found on GitHub11.

The current implementation of the Floodlight

REST client might be improved with community

contributions, and the software's design is ready to

accept them. Because it is written in Java, it can

run on any machine. Mininet and Open Flow v1.3

were used to test and verify the functionality of the

provided application. Additionally, the standard

data center network architecture and Open Flow

version 1.0 were used in the evaluation of an SDN

research cluster. In addition, a live video streaming

was used to test the tool in a realistic network

environment. Thus, SOFTmon has already shown

that the capital S does not indicate a lack of

features or functionality, but rather that it is easy to

use. One of the design constraints was that the tool

be very easy to use. A simple, controllable solution

like SOFTmon might be extremely beneficial in

deploying SDN in productive settings by providing

users with a simple, but powerful administrative

application, such as Network Operation Control

(NOC) operators. Another perk is that SOFTmon

may be used independently of the network. The

NOC retains primary control over the network, but

a local admin, for example, may utilize the tool to

investigate a problem.

 References

1. Zabbix :: The enterprise-class monitoring

solution for everyone. 2016. URL:

http://www.zabbix.com.

 2. Nagios – the industry standard in it

infrastructure monitoring. 2016. URL:

https://www.nagios.org.

3. Opendaylight platform. 2016. URL:

https://www.opendaylight.org.

4. Project floodlight. 2016. URL:

http://www.projectfloodlight.org/floodlight/.

5. Baik, S., Lim, Y., Kim, J., Lee, Y.. Adaptive flow

monitoring in sdn architecture. In: Network

Operations and Management Symposium

(APNOMS), 2015 17th Asia-Pacific. 2015, p. 468–

470. doi:10.1109/APNOMS.2015.7275368.

6. Isolani, P.H., Wickboldt, J.A., Both, C.B.,

Rochol, J., Granville, L.Z.. Interactive monitoring,

visualization, and configuration of open flow-based

sdn. In: 2015 IFIP/IEEE International Symposium

on Integrated Network Management (IM). 2015, p.

207–215. doi:10.1109/INM.2015.7140294.

7. Pajin, D., Vuleti, P.V.. Of2nf: Flow monitoring

in open flow environment using net flow/infix. In:

Network Softwarization (NetSoft), 2015 1st IEEE

Conference on. 2015, p. 1–5.

doi:10.1109/NETSOFT.2015.7116138.

8. van Adrichem, N.L.M., Doerr, C., Kuipers, F.A...

Opennetmon: Network monitoring in openflow

software-defined networks. In: 2014 IEEE Network

Operations and Management Symposium (NOMS).

2014, p. 1–8. doi:10.1109/NOMS.2014.6838228.

9. Grover, N., Agarwal, N., Kataoka, K.. liteflow:

Lightweight and distributed flow monitoring

platform for sdn. In: Network Softwarization (Net

Soft), 2015 1st IEEE Conference on. 2015, p. 1–9.

doi:10.1109/NETSOFT.2015.7116160.

10. Raumer, D., Schwaighofer, L., Carle, G..

Monsamp: A distributed sdn application for qos

monitoring. In: Computer Science and Information

Systems (FedCSIS), 2014 Federated Conference

on. 2014, p. 961–968. doi:10.15439/2014F175.

http://www.zabbix.com/
https://www.nagios.org/
https://www.opendaylight.org/
http://www.projectfloodlight.org/floodlight/

