

 ISSN 2454-9940

 www.ijasem.org

 Vol 18, Issue 4, 2024

https://doi.org/10.5281/zenodo.14351098

401

Resource Over Commitment And User Centric Interference In

Virtualized Environment

K. BhavyaDeepika1, Dr. M. SureshBabu 2

1PG Scholar, Department of CSE, Teegala Krishna Reddy Engineering College

(Autonomous Institution), Medbowli, Meerpet, Saroornagar, Hyderabad
2 Professor, Department of CSE, Teegala Krishna Reddy Engineering College (Autonomous Institution),

Medbowli, Meerpet, Saroornagar, Hyderabad

ABSTRACT

Modern distributed server applications are hosted on enterprise or cloud data centers that

provide computing, storage, and networking capabilities to these applications. These applications are

built using the implicit assumption that the underlying servers will be stable and normally available,

barring for occasional faults. In many emerging scenarios, however, data centers and clouds only

provide transient, rather than continuous, availability of their servers. Transiency in modern

distributed systems arises in many contexts, such as green data centers powered using renewable

intermittent sources, and cloud platforms that provide lower- cost transient servers which can be

unilaterally revoked by the cloud operator. Transient computing resources are increasingly important,

and existing fault tolerance and resource management techniques are inadequate for transient servers

because applications typically assume continuous resource availability. This project presents research

in distributed systems design that treats transiency as a first-class design principle. Combining

transiency-specific fault-tolerance mechanisms with resource management policies to suit application

characteristics and requirements, can yield significant cost and performance benefits. These

mechanisms and policies have been implemented and prototyped as part of software systems, which

allow a wide range of applications, such as interactive services and distributed data processing, to be

deployed on transient servers, and can reduce cloud computing costs by up to 90%. This thesis makes

contributions to four areas of computer systems research: transiency- specific fault-tolerance,

resource allocation, abstractions, and resource reclamation. For reducing the impact of transient

server revocations, two fault tolerance techniques that are tailored to transient server characteristics

and application requirements are developed. For interactive applications, a derivative cloud platform

that masks revocations by transparently moving application-state between servers of different types is

constructed. Similarly, for distributed data processing applications, the use of application level

http://www.ijasem.org/
https://doi.org/10.5281/zenodo.14351098

 ISSN 2454-9940

 www.ijasem.org

 Vol 18, Issue 4, 2024

https://doi.org/10.5281/zenodo.14351098

402

periodic check pointing to reduce the performance impact of server revocations is investigated. For

managing and reducing the risk of server revocations, the use of server portfolios that allow transient

resource allocation to be tailored to application requirements is also investigated. Resource deflation

generalizes revocation, and the deflation mechanisms and cluster-wide policies can yield both high

cluster utilization and low application performance degradation.

Keywords:Resource deflation,User-centric Interference,SDLC,cloud platforms

I. INTRODUCTION

Many enterprises and software systems rely in large part on

cloud computing platforms for their computing needs.

Today’s cloud platforms enable customers to rent

computing resources and deploy applications on them in an

on demand manner. This utility-computing model offers

numerous benefits, including pay-as-you-go pricing, the

ability to quickly scale capacity when necessary, and low

costs, due to their high degree of statistical multiplexing

and massive economies of scale. To handle the growing

number and diversity in applications, cloud platforms offer

computing resources with a wide range of cost,

availability, and performance characteristics. This project

looks at one such type of computing resource, called

transient servers. In contrast to traditional cloud servers

whose availability can be assumed to be continuous,

transient servers only offer intermittent and transient

availability, and applications can have their access forcibly

revoked by the resource provider. Running modern

distributed applications on transient servers raises a slew of

new challenges. Most applications are designed and built

with the implicit assumption that its computing resources

will continue to be available until relinquished. Transient

server revocations can cause loss of application-state,

which can result in application downtimes, degraded

performance due to failure-recovery, and end-user

dissatisfaction in general. While transient servers introduce

many challenges for applications, they are also

significantly cheaper compared to their non-revocable

counterparts. For example, transient servers offered by

large public cloud providers such as Amazon EC2’s spot

servers can be upto 50-90% cheaper compared to the

traditional, non-revocable, “on-demand” servers. This

project examines and addresses some of the challenges of

running applications on cloud transient servers. These

challenges are addressed by designing and building systems

that introduce new mechanisms, policies, and abstractions—

that together enable more effective use of transient servers

for a wide range of applications.

 II. RELATED WORK

 T. Wood et al. [4] give the black and grey box strategies

with bg algorithm. Author uses xen hypervisor and finds

with nucleus and monitoring engine, grey-box enables

proactive decision making. While it has the limitation as,

black-box is limited to reactive decision making and bg

algorithm requires more number of migrations. A. Singh et

al. [5] introduces the integrated server storage

virtualization (vector dot algorithm) using configuration

and performance manager. This scheme has a smaller

amount of complication but its forecasting is not

believable. Because of uneven distribution of remaining

resource makes it hard to be fully utilized in the future.

Zhen xiao [6] gives the strategy for dynamic resource

allocation with skewness and load prediction algorithm. He

uses xen hypervisor usher controller. The merits in his

system are no overheads, high performance. It requires less

number of migrations and residual resource is friendly to

http://www.ijasem.org/
https://doi.org/10.5281/zenodo.14351098

 ISSN 2454-9940

 www.ijasem.org

 Vol 18, Issue 4, 2024

https://doi.org/10.5281/zenodo.14351098

403

virtual machines. It improves the scheduling effectiveness.

The demerit of the system is it is not cost effective. The

benefit of shared space of cloud infrastructure explained by

l. Qiang et al. [7] in which author proposed resource

allocation strategy using feedback control theory, for

suitable management of virtualized resources, which is

based on virtual machine (vm). In this vm-based

architecture all hardware resources are combined into

common shared space in cloud computing infrastructure so

that hosted application can right to use the required

resources as per there need to meet service level objective

(slos) of application. The adaptive manager use in this

architecture is multi-input multi-output (mimo) resource

manager, which consist of 3 controllers: cpu controller,

memory controller and i/o controller, its goal is control

multiple virtualized resources utilization to achieve slos of

application by using control inputs per-vm cpu, memory

and i/o allocation. Utility functions provide a natural and

advantageous framework for achieving self-optimization in

distributed autonomic computing systems explained by

walsh et al. [8]. Author present a distributed architecture,

implemented in a realistic prototype data center that

demonstrates how utility functions can enable a collection

of autonomic elements to continually optimize the use of

computational resources in a dynamic, heterogeneous

environment. The architecture consists of a two-level

structure of autonomic elements that supports elasticity,

modularity, and self-management. Each individual

autonomic element manages application resource usage to

optimize local service-level utility functions, and a global

arbiter maps resources among application environments

based on resource-level utility functions obtained from the

managers of the applications. The utility function scheme

is suitable for handling realistic, fluctuating web-based

transactional workloads running on a linux cluster.

Resource provision based on updated actual task executed

explained by jiayin li et al. [9] which proposes an adaptive

resource allocation algorithm for the cloud system with

preempt able tasks in which algorithms adjust the resource

provision adaptively based on the updated of the actual

task executions. Author proposed adaptive list scheduling

(als) and adaptive min-min scheduling (amms) algorithms

and used for task scheduling which includes static task

scheduling, for static resource allocation, is generated

offline. Online adaptive method is use for re-evaluating the

remaining static resource allotment repeatedly with

predefined frequency. For every re-evaluation process, the

schedulers are re-calculating the finish time of their

respective submitted tasks, not the tasks that are assign to

that cloud. So this method is suitable for static resource

allocation. The dynamic resource allocation using

distributed multiple criteria decisions in computing cloud

explained by yazir y.o.et al. [10]. In it author contribution

is tow-fold, first distributed architecture is adopted, in

which resource management is separated into independent

tasks, each of which is performed by autonomous node

agents (na) in ac cycle of three activities: (i) vm placement,

in it suitable physical machine (pm) is found which is

capable of running given vm and then assigned vm to that

pm, (ii) monitoring, in it total resources use by hosted vm

are monitored by na, (iii) in vm selection, if local

accommodation is not possible, a vm need to migrate at

another pm and process loops back to into placement.

Second using promethee method, node agent carry out

configuration in parallel through multiple criteria decision

analysis. This scheme is most suitable for large data

centers as compared with centralized approaches.

Nowadays distributed computing systems solves rising

demand of computing and memory. In the distributed

systems specifically resource allocation is one of the most

important challenges while the clients have service level

agreements (slas) and the whole profit in the system

http://www.ijasem.org/
https://doi.org/10.5281/zenodo.14351098

 ISSN 2454-9940

 www.ijasem.org

 Vol 18, Issue 4, 2024

https://doi.org/10.5281/zenodo.14351098

404

depends on how the system can meet these slas. This issue

was solved by solved by goudarzi et al. [11] which

optimizes the total profit gained from the multidimensional

sla contracts for multi-tire application. In this scheme

higher level of entire profit is provided by using force-

directed resource assignment (fra) heuristic algorithm, in

this case primary solution is based on provided solution for

profit higher level problem. Then, distribution rates are set

and local optimization step is use for improving resource

sharing. Resource consolidation method is applied lastly to

consolidate resources to determine the active (on) servers

and further optimize the resource obligation. As

concluding this method is suitable for improving resource

sharing and to optimize the resource assignment. Use of

steady state timing models, tafi. Et al. [12] presents

information of cloud hpc resource arrangement. In which

author proposed quantitative application dependent

instrumentation scheme to inspect several important

dimensions of a program’s scalability. Sequential and

parallel timing model with program instrumentations can

reveal architecture exact deliverable performances that are

difficult to measure otherwise. These models are

introduces to connect s.k.sonkar et al., international journal

of advanced trends in computer science and engineering,

4(4), july - august 2015, 48 - 51 50 several dimensions to

time domain and application speed up model is use to tie

these models in same equation. This provides ability to

explore multiple dimension of program quantitatively to

gain non--trivial insight. Authors use amazon ec2 as a

target processing environment.

III. SYSTEM ANALYSIS

Different cloud providers have employed different

approaches for pricing transient servers. Google’s transient

servers, called preemptible instances, offer a fixed 80%

discount but also have a maximum lifetime of 24 hours

(with the possibility of earlier preemption). In contrast,

Amazon’s transient servers (which are called spot

instances) offer a variable discount—the price of spot

instances varies continuously based on market supply and

demand for each server type (Figure 2.2). Spot instances

are typically 0.1–0.5× the cost of non-revocable on-

demand instances.

Since transient servers are surplus idle machines, the

resources available in the transient server pool fluctuate

continuously depending on the supply and demandof on-

demand servers. Thus, whether a certain transient server is

available depends on current market conditions. A

combination of server-type (such as large/small),

geographical region, and availability zone (data center

failure domains within aregion), define a separate market

of transient servers. The price and/or availability

characteristics of individual markets can differ, as see,

which shows EC2 spot prices. In this example, the

m3.medium in availability zone a has the most stable

prices, g2.2xlarge in the same availability zone has a lower

average price but high variance, and the m3.medium in

availability zone b has higher price.

Figure 2.4: The effect of bidding on availability,

expected cost, and MTBR for selected instance types.

Bids and the expected costs are normalized to a factor of

thecorresponding on-demand price.high variance, and the

http://www.ijasem.org/
https://doi.org/10.5281/zenodo.14351098

 ISSN 2454-9940

 www.ijasem.org

 Vol 18, Issue 4, 2024

https://doi.org/10.5281/zenodo.14351098

405

m3.medium in availability zone b has higher price. The

g2.2xlarge price spikes are not correlated with the other

two servers. The example shows that larger servers may

occasionally be more heavily discounted than smaller

servers, and that identical servers in two availabilityzones

may also be priced differently. The supply and demand of

different server types across different regions may not

always be correlated, and this is reflected in the general

lack of correlation intheir spot prices (Figure 2.3).Bidding

for EC2 spot instances. Amazon EC2 spot prices are

determined by continuous sealed-bid second-price auction.

Users place a single, fixed bid, which represents the

maximum hourly price that they are willing to pay. The

market price is based on all the bids and the available

supply. Importantly, all users pay the same market price,

which may be lower than the bid. The price of a spot

instances in EC2 thus fluctuates continuously in real-time

based on market demand and supply. If the spot price rises

above a user’s maximum bid price due to increased market

demand, EC2 revokes the spot server from the user after

providing a two minute warning (and presumably allocates

it to a higher paying user).

IV. IMPLEMENTATION

Software Development Life Cycle, SDLC for short, is a well-

defined, structured sequence of stages in software engineering

to develop the intended software product.

Software Development Paradigm:

The software development paradigm helps developer to select

a strategy to develop the software. A software development

paradigm has its own set of tools, methods and procedures,

which are expressed clearly and defines software development

life cycle. A software development paradigms or process

models are defined as follows:

Spiral Model

Spiral model is a combination of both, iterative model and one

of the SDLC model. It can be seen as if you choose one SDLC

model and combine it with cyclic process (iterative model).

 Fig.5.1 Spiral Model

This model considers risk, which often goes un-noticed by

most other models. The model starts with determining

objectives and constraints of the software at the start of one

iteration. Next phase is of prototyping the software. This

includes risk analysis. Then one standard SDLC model is used

to build the software. In the fourth phase of the plan of next

iteration is prepared.

SDLC Activities

SDLC provides a series of steps to be followed to design and

develop a software product efficiently.

SDLC framework includes the following steps:

http://www.ijasem.org/
https://doi.org/10.5281/zenodo.14351098

 ISSN 2454-9940

 www.ijasem.org

 Vol 18, Issue 4, 2024

https://doi.org/10.5281/zenodo.14351098

406

 Fig.5.2 SDLC Communication

This is the first step where the user initiates the request for a

desired software product. He contacts the service provider and

tries to negotiate the terms. He submits his request to the

service providing organization in writing.

Requirement Gathering

This step onwards the software development team works to

carry on the project. The team holds discussions with various

stakeholders from problem domain and tries to bring out as

much information as possible on their requirements. The

requirements are contemplated and segregated into user

requirements, system requirements and functional

requirements. The requirements are collected using a number

of practices as given –

❖ studying the existing or obsolete system and

software,

❖ conducting interviews of users and developers,

❖ referring to the database or

❖ Collecting answers from the questionnaires.

V. RESULTS AND DISCUSSION

 Fig 1 : A representative deflation utility curve

Fig 2 : memcached performance shows high

correlation with cpu counters (pearson

correlation=0.72). Drop in counters predicts the knee

at 50% deflation.

(a) Memcached memory deflation(b) Kernel-compile

memory deflation(c)kernel-compile cpu deflation

http://www.ijasem.org/
https://doi.org/10.5281/zenodo.14351098

 ISSN 2454-9940

 www.ijasem.org

 Vol 18, Issue 4, 2024

https://doi.org/10.5281/zenodo.14351098

407

(a) Memcached (b) JVM (SpecJBB)

 Figure 3 : Deflation-aware application performance

Fig 4: Compared to optimal utility maximization,

performance of VMs with the knee-aware proportional

deflation is within 10%-50% of the optimal.

Fig 5: Server overcommitment and preemption

probabilities (right axis) with different VM placement

policies.

 Fig 6: Clusters and Premptions

Fig 7: Performance overhead of fault-tolerance when using

preemption and deflation

VI. CONCLUSION

This dissertation presents a comprehensive exploration of

transient resource availability in cloud computing. By

addressing the challenges posed by transient servers with

innovative fault-tolerance techniques and resource

management policies, we have demonstrated the potential for

significant cost savings and performance improvements.

Resource over-commitment and user-centric interference are

critical aspects to consider in a virtualized environment. Both

involve managing resources efficiently and ensuring a high-

quality user experience. Resource over-commitment refers to

the practice of allocating more virtual resources to virtual

machines (VMs) than the physical resources available on the

host. This can be done for CPU, memory, and storage.

http://www.ijasem.org/
https://doi.org/10.5281/zenodo.14351098

 ISSN 2454-9940

 www.ijasem.org

 Vol 18, Issue 4, 2024

https://doi.org/10.5281/zenodo.14351098

408

Resource over commitment allows better utilization of

physical resources, as not all VMs will use their maximum

allocated resources simultaneously and reduces the need for

additional hardware, leading to cost savings. This provides

flexibility in managing workloads and scaling up services

dynamically. The systems developed and described herein

represent a major advancement in the practical use of transient

resources, providing a robust framework for a wide range of

applications to benefit from this exciting and important

resource allocation model

REFERENCES

[1] Alibaba cloud. http://www.alibabacloud.com.

[2] Amazon ec2 instance offerings.

https://aws.amazon.com/ec2.

[3] Amazon web services - cloud computing services.

https://aws.amazon.com/.

[4] Google cloud computing. http://cloud.google.com.

[5] Ibm cloud. http://www.ibm.com/cloud.

[6] Joyent public cloud. http://www.joyent.com.

[7] Memcached. https://memcached.org/.

[8] Microsoft azure cloud computing platform and services.

 http://azure. microsoft.com.

[9] QEMU Microcheckpointing.

http://wiki.qemu.org/Features/ MicroCheckpointing.

[10] SPECjbb2005. https://www.spec.org/jbb2005/.

[11] TPC-W Benchmark. http://jmob.ow2.org/tpcw.html.

[12] Google’s Green PPAs: What, How, and Why.

http://www.google.com/green/pdfs/renewable-energy.pdf,

April 2011.

[13] Heroku. http://www.heroku.com, May 1st 2014.

[14] PiCloud. http://www.multyvac.com, May 1st 2014.

[15] RightScale. http://rightscale.com, May 1st 2014.

[16] Single Root I/O Virtualization.

https://www.pcisig.com/specifications/iov/single_root/,M

ay 1st 2014.

[17] Amazon EC2 Spot Instances.

https://aws.amazon.com/ec2/spot/, Septem-ber 24th

2015.

[18] Amazon Elastic Map Reduce for Spark.

https://aws.amazon.com/ elasticmapreduce/details/spark/,

June 2015.

[19] Docker. https://www.docker.com/, June 2015.

[20] Ec2 spot bid advisor.

https://aws.amazon.com/ec2/spot/bid-advisor/, September

2015.

[21] Ec2 Spot Blocks, October 2015.

https://aws.amazon.com/about-aws/whats-

new/2015/10/introducing-amazon-ec2-spot-instances-for-

specific- duration- workloads/.

[22] Ec2 spot-fleet.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/

spot- fleet.html, September 2015.

[23] Eucalyptus workload traces.

 https://www.cs.ucsb.edu/~rich/workload/, 2015.

[24] Google preemptible instances.

https://cloud.google.com/compute/docs/

instances/preemptible, September 24th 2015.

[25] Livejournal Social Network Dataset.

 https://snap.stanford.edu/data/soc- LiveJournal1.html,

June 2015.

[26] Lxc. https://linuxcontainers.org/, June 2015.

[27] Openstack. https://www.openstack.org, June 2015.

[28] Transaction Processing Performance Council -

Benchmark H. http://www.tpc. org/tpch/, June 2015.

[29] Cloudstack. https://cloudstack.apache.org/, March 2016.

[30] Docker Swarm.

https://www.docker.com/products/docker-swarm,

March2016.

[31] Hadoop Recovery.

 https://twiki.grid.iu.edu/bin/view/Storage/

HadoopRecovery, March 2016.

[32] Kubernetes. https://kubernetes.io, June 2016.

[33] Lxd. https://linuxcontainers.org/lxd/, January

2016.

[34] Mpich: High performance portable mpi.

https://www.open-mpi.org/, 2016.

[35] Openmpi checkpointing. https://www.open-

mpi.org/faq/?category=ft, 2016.

[36] Risk-return trade-off.

http://cvxopt.org/examples/book/portfolio.html, 2016.

[37] VMware ESX hypervisor.

 https://www.vmware.com/products/vsphere-

hypervisor, March 2016.

[38] VMware vCenter.

 https://www.vmware.com/products/vcenter-server,

March 2016.

http://www.ijasem.org/
https://doi.org/10.5281/zenodo.14351098

