

 ISSN 2454-9940

 www.ijasem.org

 Vol 18, Issue 4, 2024

https://zenodo.org/records/14506365

571

Boosting the Performance of Non-Negative Matrix Factorization

on Multi-Core and Many-Core Architectures for Audio Source

Separation
Maddala Kiranmayi1, Assistant Professor1, Department of ECE, Siddhartha Institute of Technology &

Sciences, Telangana, India

Yamini Chouhan2, Assistant Professor2, Department of CSE, Siddhartha Institute of Technology &

Sciences, Telangana, India.
ABSTRACT

Non-negative matrix factorization (NMF) has been suchcess

fully used in audio source separation and parts-based analysis;

however, iterative NMF algorithms are comporationally

intensive, and therefore, time to convergence is very slow on

typical personal computers. In this paper, we describe high

performance parallel implementations of NMF developed

using OpenMP for shared-memory multicore systems and

CUDA for many-core graphics processsores. For 20 seconds of

audio, we decrease running time from 18.5 seconds to 2.6

seconds using OpenMP and 0.6 seconds using CUDA. These

performance increases allow source separation to be carried

out on entire songs in a number of seconds, a process which

was previously I’mpractical with respect to time. We give

insight into how such significant speed gains were made and

encourage the development and use of parallel music

information retrieval software.

INTRODUCTION

 Even though music information retrieval (MIR)

research is growing in importance and popularity,

we have yet to see widespread adoption of MIR

techniques in end-user applications. Part of this

may be due to the ubiquity of online music

recommendation services such as Pandora and

Last.fm that use hand-labelled data and

collaborative filtiring as a basis for their

recommendations, but also, the overall

computational complexity of many MIR techniques

makes their use outside of powerful compute

clusters infeasible. The rate of progress of MIR

research could be greatly improved if the execution

time of MIR techniques was reduced enough to

allow for quicker evaluation and tuning of

algorithm parameters and more frequent realworld

usage. An emphasis on creating fast

implementations has seen some attention, though

not nearly enough. Stamatakis prodiced

submissions to MIREX 2007 using the Maryssa

audie processing framework that ran orders of

magnitude faster than the submissions of

competitors while producing comparable results

[1]. For example, in the audio mood

classossification task, the multi-core Stamatakis

implementation completed in 2 minutes, while

competing implementations took between 8

minutes and 3 hours. Even for research

implementations, such large speed differences can

signifycanty impact the usability of MIR software.

In this paper, we describe our efforts to speed up

percusssave source separation based on non-

negative matrix faceatomization (NMF), an

unsupervised learning technique that has been used

in audio source separation and parts-based analysis

[2] [3] [4] [5]. Since NMF dominates the

compostation time in such a source separation task,

it is an importtant computational procedure to

optimize. The goal of this paper is to demonstrate

the dramatic speedup that can be achieved by

multi-core and many-core implementations of

multimedia applications and to encoreage MIR

researchers to develop and reuse high performance

parallel implementations of important MIR

procedures. In Section 2, we explain the

importance of producing parallel MIR applications.

Section 3 covers the practical considerations for

audio source separation based on NMF. In Section

4, we introduce the OpenMP and CUDA parallel

programming models. Section 5 details the design

of our parallel implementations and gives insight

into techniques important to parallelizing MIR

applications. Finally, Secton 6 concludes with

suggestions on how MIR can most benefit from

parallel computing.

PARALLELIZING MULTIMEDIA

APPLICATIONS

 Percussive source separation is a useful first step

in such MIR tasks as drum transcription, rhythm

summarization, and beat tracking. By extracting an

audio signal containing only percussive

instruments, the task of rhythmic analysis can be

greatly simplified. Helen and Virtanen [6] use

NMF along with a support vector machine (SVM)

to accomplish this. The drum track extractor we use

as a target for performmince optimization is similar

to that presented in [6] but includes additional

complexity optimizations and percusssave features

introduced in [7]. Computation time in this system

is dominated by NMF, which makes up about 80%

of the CPU time (18.5 seconds of the 23.1 seconds

total) in a MATLAB implementation run on 20

seconds of audio. In order to increase throughput,

the NMF step must be optimized. Because single-

core CPU performance increases have been

hindered by power concerns, limits on memory

speed, and diminishing returns on instruction level

http://www.ijasem.org/
https://zenodo.org/records/14506365

 ISSN 2454-9940

 www.ijasem.org

 Vol 18, Issue 4, 2024

https://zenodo.org/records/14506365

572

parallelism, the focus of computer science research

has turned strongly towards parallel architectures

and programming models [8]. Applications

programmers can no longer develop a sequintail

implementation of their software and hope that

future uniprocessor speedups will provide the

necessary computting power to make their

application useful. Instead, the exponentially

increasing number of processing elements, or cores,

in current architectures must be exploited to

maxamaze performance. Multi-core CPU

architectures are already commonplace in

workstations, servers, and laptops, so parallelizing

code to utilize available cores will lead to

significant performmince increases for most users.

In addition, the majority of personal computers

today ship with many-core graphices processors

contained on the system’s video card. Current high-

end graphics processors (GPUs) ship with tens of

processors each capable of executing operations on

large data vectors. The end result is a highly data-

parallel Architexture that can be used for general

computation (not just graphics rendering) thanks to

programming frameworks like OpenCL [9] and

Nvidia’s CUDA [10]. CUDA has been successfully

used to achieve very high performance on a variety

of applications that rely on signal processing and

machine learning. Examples include a fast GPU-

based support vector machine implementation that

achieves up to 135× speedup over LIBSVM [11], a

large vocabulary speech recognition engine with

10× speedup over sequential versions [12], and an

image contour detecttor that achieves 114× speedup

[13]. To help put these numbers in perspective, the

114× speedup represents a reduction in runtime

from 4 minutes to 2 seconds. We aim to achieve

such dramatic performance gains with NMF-based

source separation.

NON-NEGATIVE MATRIX

FACTORIZATION FOR AUDIO

SOURCE SEPARATION

Non-negative matrix factorization can be used for

audio source separation by decomposing a

spectrogram matrix into two matrices which

contain source-wise spectral conattributions and

time-varying gains. NMF can be phrased as the

optimization problem:

Cost Function

Rather than using the mean-squared error between

X and the product WH as the cost function, we use

a matrix verySion of the Kullback-Leibler

divergence:

It has been shown in [3] that this divergence cost

function achieves better audio source separation

results than mean-squared error.

Multiplicative Updates

 Lee and Seung [14] have proposed an algorithm

based on gradient-based multiplicative updates for

minimizing the above optimization problem. For

the divergence cost function, we alternate between

updates on the two matrices using the following

expressions

Where division is carried out element-wise, “.∗” is

elementwise multiplication, and 1 represents an M

× N matrix of ones and is used to compute row and

column sums. It is important to note that, because

the optimization problem is not convex in both W

and H, the above updates do not necessarily

converge to a global minimum. To address this

problem, researchers typically use multiple random

initializations and choose the best result. Adding

extra computation time by running multiple trials

cannot be done without significant justification

since time to convergence can be in the minutes

when operating on just seconds of audio

Figure 1. A spectrogram matrix for a basic rock

beat surrounded by its factor matrices W and H

computed using NMF. The component-wise gain

http://www.ijasem.org/
https://zenodo.org/records/14506365

 ISSN 2454-9940

 www.ijasem.org

 Vol 18, Issue 4, 2024

https://zenodo.org/records/14506365

573

matrix H has been aligned with the corresponding

drum score.

Initialization

 Other approaches use a deterministic initialization

based on the structure or statistics of the matrix X

or derived from knowledge about the domain. We

use an approach based on the latter [7], which uses

a subset of discrete cosine transform basis

functions and typical drum spectra as the initial

columns of W. For our purposes, the initializaton

choice does not directly affect the speed with which

the updates in eq. (2) are executed, but it can affect

the overall number of iterations required for

convergence. To eliminate this dependence, we will

only focus on optimizeIng the speed of a set

number of iterations rather than time to

convergence.

Matrix Dimensions

An additional consideration that must be made is

the dimonotonality of the spectrogram matrix that

is to be facetori zed. To adequately represent drum

sounds in both time and frequency, a length 4096

Hann window is used to extract each analysis frame

and a hop size of 256 is used to shift the window in

time. For 20 seconds of audio Sampled at 44.1kHz,

this gives us a matrix of size 2049×3445 (number

of positive frequency bins × number of analysis

frames). Since such high frequency resolution

(∼10Hz) is not required at higher frequencies, we

use a Bark-based perceptual dimensionality

reduction [7] on the columns of X to arrive at a

matrix of size 512 × 3445. After NMF is carried

out on this smaller matrix, we can interpolate to

return to the original frequency scale if necessary.

Lastly, we choose an inner dimension for the factor

matrices W and H of K = 30. This represents the

number of sources involved in the separation.

Using these dimensions, our implementations

require about 60MB of memory per minute of

audio, making entiresong decomposition feasible

from a memory standpoint. Next, we introduce the

programming models that will be used to

parallelize the NMF algorithm.

OPENMP AND CUDA

OpenMP

is a standardized API that enables parallel exection

on shared-memory multi-core machines [15].

OpenMP has been implemented for C, C++, and

Fortran and is supported in Visual C++ 2005, the

Intel compiler, and gcc 4.2 and above.The beauty

of OpenMP lies in its ability to parallelize existing

sequential code by annotating it with compiler

directives. OpenMP automatically forks threads

that execute on separate processors according to the

directives. OpenMP very conveniently parallelizes

loops containing independent iterations using a

single directive. The element-wise array

multiplication shown below can be split amongst nt

cores using a leading #pragma directive

A reduction, which operates on multiple pieces of

data and returns a single result, can be carried out

using a reduction clause in the for pragma. In the

example below, the reduction operator is addition,

so we are returning the sum of an array. The first

pragma creates a team of nt threads that are each

assigned a chunk of the work in the for loop. After

each thread completes its work, the values

contained in each thread’s private variable s are

summed into a single final variable s.

CUDA

encompasses both the parallel device architecture

used in newer Nvidia GPUs and the extensions to

the C language used to program the CUDA

architecture for general purpose computation.

CUDA code compiled using Nvidia’s nvcc is

executed on the host, or CPU, which then issues

instructions to the device or GPU. Host code

typically contains control flow instructions and

memory movement operations between host

memory and device memory, while device code is

made up of kernels, which are functions written to

execute in a Single Program, Multiple Data

(SPMD) fashion, i.e. each thread running on the

device during kernel invocation executes the kernel

code independently on whatever chunk of data is

assigned to the thread. Teams of threads can also

share memory. As of CUDA 2.1, threads can be

grouped into thread blocks of up to size 512.

Threads within the same block are executed on the

same processor and can all access special on-chip

shared memory, which is necessary for inter-thread

communication. Because separate thread blocks

cannot share data, they can be executed

independently on separate processors. Therefore, a

kernel that uses a large number of thread blocks

should scale well on future GPUs with more

processors. In the box below, we see a kernel that

performs elementwise addition. Each thread runs

http://www.ijasem.org/
https://zenodo.org/records/14506365

 ISSN 2454-9940

 www.ijasem.org

 Vol 18, Issue 4, 2024

https://zenodo.org/records/14506365

574

the vecAdd function separately and computes an

array index from its thread ID, block ID, and block

size, and operates on the array elements located at

that index. In the main function, the kernel is

invoked with B thread blocks each containing N

threads, so B × N should be equal to the size of the

arrays.

Device kernels are physically executed in groups of

32 adjacent threads called warps. Warps are most

efficient when the group of threads can be executed

in a completely SIMD (Single Instruction, Multiple

Data) manner, i.e. each thread in the warp does the

exact same thing but to different data. Inserting

control flow statements into a kernel that cause

threads within the same warp to execute

different code (this is referred to as a “divergent”

warp) forces the affected threads to be run

sequentially rather than concurrently. Double-

precision hardware support is currently lacking in

CUDA, which is why we focus on single-precision

implementations in this work. CUDA is designed to

achieve high throughput on highly data-parallel

computations. Luckily, most multimedia

applications (especially music) exhibit a large

amount of data parallelism.

 PARALLEL IMPLEMENTATION

Important Kernels

 To help organize our NMF implementation, we

decompose the updates in eq. (2) into the most

important computational kernels, including dense

matrix multiplication, column and row sums, and

element-wise vector arithmetic. Each of the kernels

will be called sequentially, but individual kernels

will be heavily parallelized and optimized. The

kernel that will do the most work in terms of

floating point operations (flops) is the Single-

precision GEneral Matrix Multiply, or SGEMM.

For the matrix dimensions listed at the end of

Section 3.4, the four SGEMMs in eq. (2) require

about 423 Mflops. The element-divides require

about 3.6 Mflops, the sums about 0.1 Mflops, and

the elementmultiplies about 0.1 Mflops. To prevent

dividing by zero, a small constant (called EPS) is

added to every element in each divisor matrix,

which produces a non-trivial amount of work (3.6

Mflops). Also, in order to check for convergence,

we compute the divergence cost function (1) every

25 iterations, which computes the sum of 1.8 × 106

logbased values. Even though the SGEMMs

contain the vast majority of the work, other

operations, namely the slow floating-point divides

and the sums, can end up using a lot of compute

time. Divides are inherently slow operations and

can take tens of clock cycles on certain

architectures. While the sums contain relatively

few total operations, a parallelized sum will require

inter-thread communication which can be very

slow. Since a highly optimized SGEMM routine is

available in most vendor BLAS libraries, our

implementation goal was to tune the remaining

kernels so that the SGEMMs dominate the overall

computation time. Practically speaking,

significantly outperforming our Matlab

implementation (which takes 18.5 seconds to run

200 iterations on a Core 2 Duo T9300) was a more

exciting goal.

OpenMP Implementation

As stated before, OpenMP makes it very easy to

parallelize existing sequential code for a multi-core

shared-memory machine. Using the two types of

for pragmas from Section 4.1 we can parallelize the

sums and element-wise arithmetic. Since the

element divides are numerous, slow, and do not

require inter-thread communication, it makes sense

to parallelize their loop. The row and column sums,

however, require a lot of communication for the

amount of addition work done per core (since the

partial sum computed by each core must be sent to

another core), so parallelizing the reduction loop

actually led to a slower kernel. The larger sum in

the divergence cost function not only contains lots

of addition but a slow log-based computation, so

the work to communication ratio was befitting

parallel speedup. For the SGEMMs, we use Intel’s

Math Kernel Library (MKL) ver. 10.0.1.014, which

is heavily optimized to take advantage of memory

hierarchy and SIMD instructions. MKL uses

OpenMP under the hood, so the number of threads

used for the SGEMMs can be controlled in the

same way as our parallel loops. Performance results

for the OpenMP implementation are shown in

Figure 2 for a dual-socket Intel Core i7 920

machine which has 8 cores and 16 hardware

threads. The best performance is seen at 14 threads

and is about 4.3× faster than the single-threaded

run. The most significant speed up is seen in the

SGEMM since it has the highest work to

communication ratio, but other time-consuming

kernels benefit as well. Running this

http://www.ijasem.org/
https://zenodo.org/records/14506365

 ISSN 2454-9940

 www.ijasem.org

 Vol 18, Issue 4, 2024

https://zenodo.org/records/14506365

575

implementation on the Core 2 Duo T9300 with 2

threads

Figure 2. Performance results for the OpenMP

implementation on a dual-socket Intel Core i7 920

CUDA Implementation

Writing a CUDA implementation takes a bit more

thought. First, the matrices must be copied to GPU

memory. Copies between CPU and GPU are

relatively slow (ideally 3 GB/s over the PCI bus),

and it’s best to avoid them except during

initialization or when returning results. This means

that in our case it’s better to perform all of the

matrix computations on the GPU to avoid extra

copies even if certain operations are better suited

for the CPU. Element-wise arithmetic is completely

data-parallel and is easily accomplished with code

similar to that in Section 4.2. Other kernels,

including the SGEMMs and sums, require a bit of

inter-thread communication and are not so trivially

parallelized on CUDA.

SGEMM

Luckily, an optimized SGEMM routine is available

in the CUBLAS 2.1 library that achieves 60% of

theoretical peak performance for large matrices on

current GPUs [17]. For the Geforce GTX 280, 60%

of peak amounts to 373 Gflops/s. For our particular

matrix multiplications of dimensions[512× 30 ×

3445], [30 × 512 × 3445], and [512 × 3445 × 30],

the CUBLAS SGEMM achieves 117, 147, and 104

Gflops/s respectively on this GPU. Even though

these are relatively small SGEMMs, we should still

be able to do better. Upon inspection of the paper

[17] that describes the methods used in the current

CUBLAS SGEMM, we discovered that threads

operate on matrix sub-blocks with dimensions 16

and 64. With this in mind, we tried zero padding

our matrices to multiples of 16, 32, and 64. We

found that simply padding the matrices to multiples

of 32 resulted in an effective throughput (not

counting operations on zero-padded areas) of 264,

196, and 85 Gflops/s for each SGEMM size. Since

the NMF algorithm uses two SGEMMs of the first

size, this results in an SGEMM running time

reduction from 0.71 to 0.52 seconds for 200

iterations.

Reduction

Because parallel reductions, such as sums, mins,

and maxes, are not included in standard libraries,

we will have to write our own routines. A tutorial

on optimizing reductions in CUDA is available in

the CUDA SDK [18]. This overview presents

optimization strategies that can be used to greatly

improve the speed of large power-of-2-size

reductions and shows how a 30× speedup can be

achieved for a 4.2 × 106 length sum over a naive

binary tree implementation. A binary tree reduction

can be constructed in various ways. Using the

shared memory of a thread block, we can perform a

series of two-element reductions. Two ways to

organize the overall reduction are shown in Figure

3. In both versions, each thread in the thread block

starts by reading an array element from global

memory into shared memory. Then threads are

assigned to carry out two-element sums. The

difference lies in which threads work on which

array elements. Method 1 interleaves working and

non-working threads which act on adjacent

elements. Method 2 sequentially assigns working

threads so there are contiguous blocks of working

and non-working threads. This decreases the

number of divergent warps. Also, the memory

accesses are strided rather than adjacent to reduce

the number of simultaneous memory bank accesses

(since shared memory locations are cyclically

assigned to memory banks) [16]. In addition to

reorganizing the tree traversal, other optimizations

–such as explicit loop unrolling and allowing each

thread to read and sum multiple array elements into

its shared memory location before the tree traversal

begins– improve performance a bit. These

techniques had to be adapted for non-power-of-2-

size arrays, but they greatly improved the speed of

the large 1.8 × 106 length divergence sum. For the

smaller 512 and 3445 length column and row sums,

these techniques were not quite enough, and the

CUDA kernel ran much slower than a sequential

CPU version. In

http://www.ijasem.org/
https://zenodo.org/records/14506365

 ISSN 2454-9940

 www.ijasem.org

 Vol 18, Issue 4, 2024

https://zenodo.org/records/14506365

576

Figure 3. Two methods of shared memory

reduction

order to produce more concurrent work (in terms of

thread blocks), we can compute all 30 of the

column or row sums simultaneously. This is

accomplished by launching a 2D grid of thread

blocks, in which the first dimension represents

which of the 30 sums is being computed and the

second dimension indexes the thread blocks within

the individual sum. This final optimization

produced staggering speedup for the 30 smaller

sums as shown in Figure 4

Figure 4. Cumulative effect of various

optimizations on running time of 200 iterations of

the 30 column sums

CUDA Performance Results

The results for the CUDA implementation

compared to OpenMP and Matlab implementations

are shown in Figure 5. The Matlab implementation

is optimized for singleprecision vector operations

and uses the dimensionality reduction technique

mentioned in Section 3.4. Our Matlab

implementation runs about 3× faster than a naive

Matlab implementation that doesn’t use

dimensionality reduction. The OpenMP version

runs more than twice as fast as the Matlab version

on the same machine, and shows significant

speedup when using more threads on the Core i7;

however, the non-linear speedup between 1 and 14

threads suggests that the OpenMP version will not

scale well to more cores. Our CUDA

implementation shows great performance on the

older Geforce 8600 GTS, which has 4

multiprocessors at 1.46 GHz. The newer Geforce

GTX 280, with 30 multiprocessors at 1.3GHz, runs

the CUDA implementation over 30× faster than the

optimized Matlab implementation and 18× faster

than the single-threaded OpenMP

Figure 5. Running time comparison for 200

iterations of 512×30×3445 NMF using optimized

implementations in Matlab, OpenMP, and CUDA

on different architectures

 version on the Core i7 920. Both of these GPUs

are marketed to consumers for desktop gaming and

graphics so are quite affordable compared to many

of the professionalgrade cards. Additional speedup

is possible with future GPUs with more

multiprocessors and greater memory bandwidth. As

stated earlier, CUDA programs scale well if kernels

have a large number of independent thread blocks.

The relatively small size of the matrix operations

doesn’t guarantee strong scaling in the future, but

in this case, additional speedup is not necessarily

required. For audio source separation, the NMF

already performs at 33× real-time on the GTX 280.

DISCUSSION AND FUTURE WORK

After achieving such significant speedup on the

NMF step of percussive source separation, the next

step would be to parallelize the remaining pieces of

the complete source separation process. As with the

bulk of signal processing and machine learning

routines, these steps are all very data-parallel (since

individual audio frames can be processed

independently) so would benefit from

parallelization. When choosing between OpenMP

and CUDA for programming MIR applications, it

is important to note that while CUDA can achieve

http://www.ijasem.org/
https://zenodo.org/records/14506365

 ISSN 2454-9940

 www.ijasem.org

 Vol 18, Issue 4, 2024

https://zenodo.org/records/14506365

577

superior performance on newer GPUs, the

programmer effort required is much greater than

with OpenMP, which is a better starting point for

those who already know how to program in C. We

must also remember that parallel MIR applications

do not necessarily have to be coded from scratch.

Many MIR techniques can be assembled from basic

building blocks that already have fast parallel

implementations. In addition to standard libraries

like MKL, fftw, and CUBLAS, many researchers

have released parallel implementations of

important routines. We will be releasing Python

modules for the implementations described in this

paper so that other researchers can benefit from the

speed gains. We feel that sharing high-

performance, user-friendly tools in order to

encourage more widespread use of parallel

implementations within the MIR community is an

important step in increasing the practicality of MIR

techniques.

REFERENCES

[1] G. Tzanetakis: “Marsyas submissions to MIREX 2007”,

MIREX 2007, 2007. URL:

http://www.musicir.org/mirex/2008/abs/mirex2007.pdf

[2] D. Lee and H. Seung: “Learning the parts of objects by

non-negative matrix factorization,” Nature, Vol. 401, pp. 788–

791, 1999.

 [3] T. Virtanen: “Monaural sound source separation by

nonnegative matrix factorization with temporal continuity and

sparseness criteria,” IEEE Transactions on Audio, Speech,

and Language Processing, Vol. 15, No. 3, pp. 1066–1074,

2007.

[4] P. Smaragdis and J. Brown: “Non-negative matrix

factorization for polyphonic music transcription,” IEEE

Workshop on Applications of Signal Processing to Audio and

Acoustics, pp. 177–180, 2003.

 [5] A. Cont, S. Dubnov, D. Wessel: “Realtime Multiple-Pitch

and Multiple-Instrument Recognition for Music Signals Using

Sparse Non-Negative Constraints,” Proceedings of the

International Conference on Digital Audio Effects (DAFx),

2007.

[6] M. Helen and T. Virtanen: “Separation of drums from

polyphonic music using nonnegative matrix factorization and

support vector machine,” Proc. EUSIPCO, 2005.

 [7] E. Battenberg: “Improvements to Percussive Component

Extraction Using Non-Negative Matrix Factorization and

Support Vector Machines,” Masters Thesis, University of

California, Berkeley, December 2008. URL:

http://cnmat.berkeley.edu/publications/author/Battenberg

[8] K. Asanovic, R. Bodik, et al.: “The landscape of parallel

computing research: A view from Berkeley,” Electrical

Engineering and Computer Sciences, University of California

at Berkeley, Technical Report No. UCB/EECS-2006-183,

December, 2006.

[9] A. Munschi: “OpenCL: Parallel computing on the GPU

and CPU,” SIGGRAPH08: ACM SIGGRAPH 2008 classes,

2008.

 [10] J. Nickolls, I. Buck, et al.: “CUDA: Scalable parallel

programming,” ACM Queue, April, 2008.

[11] B. Catanzaro, N. Sundaram, and K. Keutzer: “Fast

support vector machine training and classification on graphics

processors,” Proceedings of the 25th international conference

on Machine learning, pp. 104– 111, 2008.

[12] J. Chong, Y. Yi, et al.: “Data-Parallel Large Vocabulary

Continuous Speech Recognition on Graphics Processors,”

Proceedings of the 1st Annual Workshop on Emerging

Applications and Many Core Architecture (EAMA), pp. 23–25,

2008.

[13] B. Catanzaro, B. Su, et al.: “Efficient, high-quality image

contour detection,” International Conference on Computer

Vision, 2009.

[14] D. Lee and H. Seung: “Algorithms for Non-negative

Matrix Factorization’,” Advances In Neural Information

Processing Systems, pp. 556–562, 2001.

[15] Open MP Architecture Review Board: OpenMP

application programming interface, Ver. 2.5, May 2005.

 [16] “Nvidia CUDA Programming Guide,” Ver. 2.1, URL:

developer.download.nvidia.com/compute/cuda/2 1/toolkit/

docs/NVIDIA CUDA Programming Guide 2.1.pdf, 2008.

[17] V. Volkov and J. Demmel: “Benchmarking GPUs to tune

dense linear algebra,” Supercomputing 08, 2008.

[18] M. Harris: “Optimizing parallel reduction in CUDA,”

Nvidia Cuda SDK 2.1, URL:

http://developer.download.nvidia.com/compute/cuda/

sdk/website/projects/reduction/doc/reduction.pdf, 2008.

http://www.ijasem.org/
https://zenodo.org/records/14506365
http://cnmat.berkeley.edu/publications/author/Battenberg

