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Abstract: 
Mobile advertising plays a vital role in the mobile app ecosystem. A major threat to the sustainability 
of this ecosystem is click fraud, i.e., ad clicks performed by malicious code or automatic bot 
problems. Existing click fraud detection approaches focus on analyzing the ad requests at the server 
side. However, such approaches may suffer from high false negatives since the detection can be 
easily circumvented, e.g., when the clicks are behind proxies or globally distributed. In this paper, we 
present AdSherlock, an efficient and deployable click fraud detection approach at the client side 
(inside the application) for mobile apps. AdSherlock splits the computation-intensive operations of 
click request identification into an offline procedure and an online procedure. In the offline 
procedure, AdSherlock generates both exact patterns and probabilistic patterns based on URL 
(Uniform Resource Locator) tokenization. These patterns are used in the online procedure for click 
request identification and further used for click fraud detection together with an ad request tree 
model. We implement a prototype of AdSherlock and evaluate its performance using real apps. The 
online detector is injected into the app executable archive through binary instrumentation. Results 
show that AdSherlock achieves higher click fraud detection accuracy compared with state of the art, 
with negligible runtime overhead. 
 
Introduction: 
Many Android applications are distributed for 
free but are supported by advertisements. Ad 
libraries embedded in the app fetch content 
from the ad provider 
 and display it on the app's user interface. The 
ad provider pays the developer for the ads 
displayed to the user and ads clicked by the 
user. A major threat to this ecosystem is ad 
fraud, where a miscreant's 
 code fetches ads without displaying them to 
the user or "clicks" on ads automatically. Ad 

fraud has been extensively studied in the 
context of web advertising but has gone 
largely unstudied in the context of mobile 
advertising. We take the first step to study 
mobile ad fraud perpetrated by Android apps. 
We identify two fraudulent ad behaviors in 
apps: 1) requesting ads while the app is in the 
background, and 2) clicking on ads without 
user interaction. Based on these observations, 
we  
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developed an analysis tool, MAdFraud, which 
automatically runs many apps simultaneously 
in emulators to trigger and expose ad fraud. 
Since the formats of ad impressions and clicks 
vary widely between different ad providers, 
we develop a novel approach for 
automatically identifying ad impressions and 
clicks in three steps: building HTTP request 
trees, identifying ad request pages using 
machine learning, and detecting clicks in HTTP 
request trees using heuristics. We apply our 
methodology and tool to two datasets: 1) 
130,339 apps crawled from 19 Android 
markets including Play and many third-party 
markets, and 2) 35,087 apps that likely 
contain malware provided by a security 
company. From analyzing these datasets, we 
find that about 30% of apps with ads make ad 
requests while in running in the background. 
In addition, we find 27 apps 
 which generate clicks without user 
interaction. We find that the click fraud apps 
attempt to remain stealthy when fabricating 
ad traffic by only periodically sending clicks 
and changing which ad provider is being 
targeted between installations. 
Detecting click fraud in online advertising: A 
data mining approach 
Click fraud-the deliberate clicking on 
advertisements with no real interest on the 
product or service offered-is one of the most 
daunting problems in online advertising. 
Building an effective fraud detection method 
is thus pivotal for online advertising 
businesses. We organized a Fraud Detection 
in Mobile Advertising (FDMA) 2012 
Competition, opening the opportunity for 
participants to work on real-world fraud data 
from BuzzCity Pte. Ltd., a global mobile 
advertising company based in Singapore. In 
particular, the task is to identify fraudulent 
publishers who generate illegitimate clicks, 
and distinguish them from normal publishers. 
The competition was held from September 1 
to September 30, 2012, attracting 127 teams 
from more than 15 countries. The mobile 
advertising data are unique and complex, 
involving heterogeneous information, noisy 
patterns with missing values, and highly 

imbalanced class distribution. The 
competition results 
 provide a comprehensive study on the 
usability of data mining-based fraud detection 
approaches in practical setting. Our principal 
findings are that features derived from fine-
grained time-series analysis are crucial for 
accurate fraud detection, and that ensemble 
methods offer promising solutions to highly-
imbalanced nonlinear classification tasks with 
mixed variable types and noisy/missing 
patterns. The competition data remain 
available for further studies 
Click fraud is jeopardizing the industry of 
Internet advertising. Internet advertising is 
crucial for the thriving of the entire Internet, 
since it allows producers to advertise their 
products, and hence contributes to the 
wellbeing of e- commerce. Moreover, 
advertising supports the intellectual value of 
the Internet by covering the running expenses 
of the content publishers' sites. Some 
publishers are dishonest, and use automation 
to generate traffic to defraud the advertisers. 
Similarly, some advertisers automate clicks on 
the advertisements of their competitors to 
deplete their competitors ' advertising 
budgets. In this paper, we describe the 
advertising network model, and discuss the 
issue of fraud that is an integral problem in 
such setting. We propose using online 
algorithms on aggregate data to accurately 
and 
 proactively detect automated traffic, 
preserve surfers' privacy, while not altering 
the industry model. We provide a complete 
classification of the hit inflation techniques; 
and devise stream analysis techniques that 
detect a variety of fraud attacks. We abstract 
detecting the fraud attacks of some classes as 
theoretical stream analysis problems that we 
bring to the data management research 
community as open problems. A framework is 
outlined for deploying the proposed detection 
algorithms on a generic architecture. We 
conclude by some successful preliminary 
findings of our attempt to detect fraud on a 
real network. 
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Detecting click fraud in pay-per-click streams 
of online advertising networks 
With the rapid growth of the Internet, online 
advertisement plays a more and more 
important role in the advertising market. One 
of the current and widely used revenue 
models for online advertising involves 
charging for each click based on the 
popularity of keywords and the number of 
competing advertisers. This pay-per- click 
model leaves room for individuals or rival 
companies to generate false clicks (i.e., click 
fraud), which pose serious problems to the 
development of healthy online advertising 
market. To detect click fraud, an important 
issue is to detect duplicate clicks over 
decaying window 
 models, such as jumping windows and sliding 
windows. Decaying window models can be 
very helpful in defining and determining click 
fraud. However, although there are available 
algorithms to detect duplicates, there is still a 
lack of practical and effective solutions to 
detect click fraud in pay-per-click streams 
over decaying window models. In this paper, 
we address the problem of detecting 
duplicate clicks in pay-per-click streams over 
jumping windows and sliding windows, and 
are the first that propose two innovative 
algorithms that make only one pass over click 
streams and require significantly less memory 
space and operations. GBF algorithm is built 
on group Bloom filters which can process click 
streams over jumping windows with small 
number of sub-windows, while TBF algorithm 
is based on a new data structure called timing 
Bloom filter that detects click fraud over 
sliding windows and jumping windows with 
large number of sub-windows. Both GBF 
algorithm and TBF algorithm have zero false 
negative. Furthermore, both theoretical 
analysis and experimental results show that 
our algorithms can achieve low false positive 
rate when detecting duplicate clicks in pay-
per-click streams over jumping windows and 
sliding windows. 
 We present AdSherlock, a productive and 
deployable snap misrepresentation 
identification approach at the customer side 
(inside the application) for versatile 
applications. AdSherlock parts the calculation 

serious tasks of snap demand distinguishing 
proof into a disconnected system and an 
online method. In the disconnected strategy, 
AdSherlock produces both careful examples 
and probabilistic examples dependent on URL 
(Uniform Resource Locator) tokenization. 
These examples are utilized in the online 
system for click demand recognizable proof 
and further utilized for click 
misrepresentation identification along with an 
advertisement demand tree model. 
Advantages: 
AdSherlock generates both exact patterns and 
probabilistic patterns based on URL (Uniform 
Resource Locator) tokenization. 
Finally, AdSherlock instruments the online 
fraud detector into the app binaries which are 
then released by the app store. Mobile 
advertising plays a vital role in the mobile app 
ecosystem. A recent report shows that mobile 
advertising expenditure worldwide is 
projected to reach $247.4 billion in 2020 [1]. 
To embed ads in an app, the app developer 
typically includes ad libraries provided by a 
third-party mobile ad 
 provider such as AdMob [2]. When a mobile 
user is using the app, the embedded ad library 
fetches ad content from the network and 
displays ads to the user. The most common 
charging model is PPC (Pay-Per-Click) [3], 
where the developer and the ad provider get 
paid from the advertiser when a user clicks on 
the ad. A major threat to the sustainability of 
this ecosystem is click fraud [4], i.e., clicks 
(i.e., touch events on mobile devices) on ads 
which are usually performed by malicious 
code programmatically or by automatic bot 
problems. There are many different click fraud 
tactics which can typically be characterized 
into two types: in-app frauds insert malicious 
code into the app to generate forged ad clicks; 
bots- driven frauds employ bot programs 
(e.g., a fraudulent application) to click on 
advertisements automatically. To quantify the 
in app ad fraud in real apps, a recent work 
MAdFraud [5] conducts a large scale 
measurement about ad fraud in realworld 
apps. In a dataset including about 130K 
Android apps, MAdFraud reports that about 
30% of apps make ad requests while running 
in the background. Focusing on bots-driven 
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click fraud, another recent work uses an 
automated click generation tool ClickDroid [4] 
to empirically evaluate eight popular 
advertising networks by performing real click 
fraud attacks on them. Results [4] show that 
six advertising 
 networks out of eight are vulnerable to these 
attacks. Aiming at detecting click frauds in 
mobile apps, a straightforward approach is a 
threshold-based detection at the server side. 
If an ad server is receiving a high number of 
clicks with the same device identifier (e.g., IP 
address) in a short period, these clicks can be 
considered as fraud. This straightforward 
approach, however, may suffer from high 
false negatives since the detection can be 
easily circumvented when the clicks are 
behind proxies or globally distributed. In the 
literature, there are also more sophisticated 
approaches [6], [7] focusing on detecting click 
frauds at the server-side. The precisions of 
these server-side approaches, however, are 
not sufficient enough for the click fraud 
problem. For example, in a recent mobile ad 
fraud competition [6], the best three 
approaches achieve only a precision of 
46.15% to 51.55% using various machine 
learning techniques. Given the insufficient 
precision of server-side approaches, a natural 
question comes up: how about client-side 
approaches? In fact, compared with the 
server-side approaches, it is easier to tell 
whether there is an actual user input at the 
client side. However, the attacker of the click 
fraud could be the app developers 
themselves, since the developers will get paid 
for those fraudulent ad clicks. Due to this 
conflict-of-interest problem, we 
 cannot assume the existence of coordination 
from developers in designing a client-side 
approach for click fraud detection, e.g., a click 
fraud detection SDK. 
Therefore, in this paper, we focus on 
designing a client-side approach to detect 
click frauds in mobile apps, without 
coordination from developers. There are two 
major challenges in designing such a system. 
First, for a mobile client, its resources are 
constrained in terms of computation, 
memory, and energy. Therefore, the proposed 
approach must perform the complete fraud 

detection process efficiently, without causing 
significant overhead. This means that we need 
to design new algorithms to detect click 
frauds since existing machine- learning 
algorithms used by server-side approaches 
are not suitable for the client side. Second, 
the click fraud detection should be able to 
execute under practical user scenarios, 
instead of a controlled environment dedicated 
to fraud detection. In MAdFraud [5], a 
controlled environment (i.e., only one app is 
running and the HTTP requests are collected 
for offline analysis) is used to measure the ad 
fraud behavior of a vast number of apps. 
However, in our case, the click fraud detection 
should happen inside the mobile 
 client without outside support, i.e., be 
deployable in real-world scenarios. In this 
paper, we propose AdSherlock, an efficient 
and deployable click fraud detection approach 
for mobile apps at the client side. Note that as 
a client-side approach, AdSherlock is 
orthogonal to existing server-side approaches. 
AdSherlock is designed to be used by app 
stores to ensure a healthy mobile app 
ecosystem. AdSherlock’s high accuracy helps 
market operators to fight both in-app frauds 
and bots-driven frauds. Note that, AdSherlock 
can also be used by any third parties to detect 
in-app frauds. For example, ad providers can 
employ AdSherlock to check whether apps 
embedding their libraries have in-app 
fraudulent behaviors. To achieve these goals, 
AdSherlock relies on an accurate offline 
pattern extractor and a lightweight online 
fraud detector. 
AdSherlock works in two stages. At the first 
stage, the offline pattern extractor 
automatically executes each app and 
generates a set of traffic patterns for efficient 
ad request identification, i.e., extracts 
common token patterns across different ad 
requests. Specifically, after tokenization of the 
network requests, AdSherlock generates both 
exact patterns and probabilistic patterns for 
robust matching. Using the offline pattern 
 extractor, AdSherlock can perform the 
computation and I/O intensive pattern 
generation operations in an offline manner, 
without degrading the online fraud detection 
operations. At the second stage, the online 
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fraud detector as well as the generated 
patterns are instrumented into the app and 
run with the app in actual user scenarios. 
Inside the app, AdSherlock uses an ad request 
tree model to identify click requests 
accurately and efficiently. Since the online 
fraud detector runs inside the app, it can 
obtain the fine-grained user input events 
which are further employed for click fraud 
detection. We implement AdSherlock and 
evaluate its performance using real apps. 
Results show that AdSherlock achieves higher 
click fraud detection accuracy compared with 
state of the art, with negligible runtime 
overhead. The contributions of this paper are 
summarized as follows: 
We present the design and implementation of 
AdSherlock, the first system which can 
achieve efficient and deployable click fraud 
detection at the client side. 
We propose a pattern generation mechanism 
that generates patterns for ad requests and 
non-ad requests with high accuracy. 
 We also propose an efficient method for 
online click fraud detection based on an ad 
request tree model. 
We implement AdSherlock and compare its 
performance with the state-of-art approach. 
Results show that AdSherlock achieves higher 
detection accuracy with lower overhead. The 
rest of this paper is organized as follows. Click 
Fraud Detection in Web Advertising in the 
context of Web advertising, researches on 
click fraud detection mainly focus on bots- 
driven click frauds. These approaches are 
usually performed at the server-side, 

analyzing network traffic and characterizing 
the features of click fraud behaviors. [8] and 
[9] aggregate ad traffics across client IP 
address and cookie IDs to observe the client 
who has deviated ad traffic behaviors. 
SBotMiner [10] detects search engine bots by 
looking for anomalies in query distribution. 
However, such server-side approaches are not 
robust against sophisticated bots who can 
vary their IP addresses and other traffic 
features. 
Different from them, AdSherlock is a client-
side method exploiting the property of click 
events on the end device which is hard to 
bypass. Moreover, these server- side methods 
need to collect sufficient ad traffics for 
analysis while AdSherlock does not need. 
From the client-side, AdSherlock 
 can detect and prevent click fraud promptly. 
Others works such as [11] and 
[12] focus on detecting duplicate clicks, where 
a publisher inflates its clicks by clicking on the 
same ad many times. These server-side 
methods can be viewed as a supplementary 
on AdSherlock in that they can detect click 
fraud performed by real humans. FcFraud [13] 
is the latest work on click fraud detection in 
web advertising from the user side and is very 
related to our work. It identifies ad clicks and 
examines whether real mouse events 
accompany them. However, it needs to collect 
a bundle of HTTP requests for the ad request 
classifier which will cause unbearable 
overhead for Andriod apps. AdSherlock, on 
the other hand, focuses on click fraud 
detection in mobile applications. 

Results: 
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Conclusion 
 
AdSherlock is an efficient and deployable click 
fraud detection approach for mobile apps at 
the client side. As a client-side approach, 
AdSherlock is orthogonal to existing server-
side approaches. It splits the computation 
intensive operations of click request 
identification into an offline process and an 
online process. In the offline process, 
AdSherlock generates both exact patterns and 
probabilistic patterns based on url 
tokenization. These patterns are used in the 
online process for click request identification, 
and further used for click fraud detection 
together with an ad request tree model. 
Evaluation shows that AdSherlock achieves 
high click fraud 
 detection accuracy with a negligible runtime 
overhead. In the future, we plan to combine 
static analysis with the traffic analysis to 
improve the accuracy of ad request 
identification and explore attacks designed to 
evade AdSherlock. 
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