
96

97

 ISSN2454-9940www.ijsem.org

 Vol 9, Issuse.2 June 2021

Tools for Information Visualization and Machine

Learning Testing with Generated Datasets

DR. SUJIT KUMAR PANDA

.

ABSTRACT

Applications known as "data generators" create artificial datasets that can be used to test data analytics tools including machine

learning algorithms and information visualization approaches. The method used to generate data varies depending on the data generator

application. As a result, each one has functional shortcomings that prevent it from being used for certain purposes (e.g., lack of ways to

create outliers and non-random noise). The data generator application described in this work intends to fill in any pertinent gaps left by

previous programs and offers a flexible tool to let researchers rigorously test their methods in various contexts. The suggested approach

enables users to define and combine well-known statistical distributions to get the required result, visualizing the data's behavior in real-

time to determine whether it possesses the necessary properties.

INDEX TERMS: Data production system, creation of synthetic datasets, and creation of benchmark datasets.

INTRODUCTION

Using actual data is the best case scenario for

evaluating machine learning algorithms and data

visualization methods.

Nonetheless, getting the data might be a significant

challenge, given that acquiring this information can

take a while, cost money, or compromise your

privacy. This situation forces researchers to

repeatedly employ the same, well-established

dataset. Researchers are either manually

constructing synthetic datasets or developing tools

to help this work in an attempt to overcome these

difficulties.

Researchers utilize these programs to gain more

command over the features of their data, allowing

them to tailor datasets to tackle targeted issues such

outlier identification, missing values, and noisy

data. [1], [2].

Often referred to simply as "data generators,"

synthetic data applications are computer programs

that alter the identifying characteristics of data

using mathematical algorithms.

PROFESSOR, Mtech,Ph.D

Department of CSE

 Gandhi Institute for Technology,Bhubaneswar

98

It was Shahzad Mumtaz, an associate editor at the

journal, who oversaw the review process and gave

final approval before the submission was

published.

Several types of generators, including those for

probability distributions, sets of categories, and so

forth. Some generators let users can save a

description of generators, which are often

lightweight les, rather than specific data pieces,

making it easy to share a blueprint of the created

dataset with others.

There are several advantages to using a synthetic

dataset generator, one of which is the ability to

manipulate data features including patterns, trends,

data type, format, outliers, dimensions, and missing

values.

[3]. In order to thoroughly evaluate visualization

strategies or machine learning algorithms in a

controlled environment, data generators may

manipulate data elements such that their properties

address a specific issue [4, 5]. In certain generators,

for instance, researchers may examine not only

whether the method can withstand the presence of

outliers, but also at what threshold of outlier

percentage it can function well.

However, there is currently no software that can

generate data perfectly.

As more and more solutions are developed, it gets

increasingly difficult to choose the most

appropriate one. That's so tough due of the

constraints that

The easiest way to judge the efficacy of a machine

learning algorithm or a data visualization technique

is to use real-world examples.

However, obtaining the information might prove to

be quite difficult, considering the time, effort, and

maybe even privacy risks involved in gathering

such data. As a result, scientists have little choice

but to keep using the same reliable data set. In an

effort to get around these problems, researchers are

either manually producing synthetic datasets or

using technologies to aid in this job.

In order to address specific problems, such locating

outliers, filling in missing values, and cleaning up

noisy data, researchers use these tools to acquire

more control over the characteristics of their data.

[1], [2].

Synthetic data applications are computer programs

that change the identifying properties of data using

mathematical procedures, and are sometimes

referred to as "data generators."

Journal assistant editor Shahzad Mumtaz handled

the review process and provided final permission

before publication.

Several sorts of generators, such as those for

generating sets of categories, random numbers, and

other distributions, and so on. Rather of saving

individual data bits, some generators let users can

record a description of generators, which are

typically lightweight les, making it simple to share

a blueprint of the produced dataset with others.

The flexibility to change things like patterns,

trends, data type, format, outliers, dimensions, and

missing values is only one of the many benefits of

employing a synthetic dataset generator.

[3]. Data generators may alter data items such that

their attributes address a particular problem [4, 5]

in order to conduct in-depth evaluations of

visualization tactics or machine learning algorithms

in a controlled setting. For example, in the case of

particular generators, scientists may look at not

only how effectively the approach handles outliers,

but also at what percentage of outliers it continues

to perform well.

Unfortunately, there is no ideal data-generating

program available right now.

As more options become available, it becomes

more challenging to choose on the best one. That's

difficult because of severe limitations.

II. RELATED WORKS

Many fields in computing, including data

visualization, data mining, software engineering,

and artificial intelligence, recognize the value of

generating synthetic datasets for testing purposes.

Sran Popi et al. [7] conducted a literature review on

the topic of synthetic data creation with an

emphasis on application testing; they focused on

the system designs and the intended use of the

apps, and they outlined the benefits and drawbacks

of the various methodologies they looked at. A

failure-based application to produce synthetic data

99

units for testing software modules has been

presented by Demillo and Offut [8]. There are

genetic algorithm works in evolutionary computing

[9], [10] that create data for software testing.

Multidimensional data may be generated using the

methodology proposed by Albuquerque et al. [11].

By adjusting statistical distributions through a

graphical user interface, the user may create a

model that accurately represents the data of

interest. However, [11] only deals with integer and

oating numbers, therefore it doesn't cover the

production of categorical data. And, [11] didn't

During the statistical distribution setup, if there is a

method to get a preview of the data that shows how

it could behave, please provide that information.

Wang et al. [12] have shown a program in which

the user may hand-draw the data distribution.

Because of this, the system builds the generators'

data model from the user's sketches. A similar

method was taken by Kwon et al. [13], who relied

on design-based interactions to direct the

development of a multi-dimensional data

visualization depending on the expertise of the

viewer.

To evaluate learning rules classication, Liu [14]

developed a synthetic data generator. Using a

method called decision tree algorithms, the work

produces learning rules based on the characteristics

given by the user in order to construct associations

between these qualities. Similarly minded

publications [15, 16], [17] have also surfaced in the

literature suggesting data synthesizers for use in

data mining applications. Since getting actual data

might be prohibitively expensive or restricted by

privacy concerns, these initiatives produce data for

testing in data mining technologies. But there are

occupations that create data for specific challenges,

as [18] who published a paper on the data

production system for healthcare applications, and

these jobs often restrict the creation of new data to

those specific domains.

The technique developed by Garca and Millán [19]

to produce synthetic data is applicable to many

different fields of study. The authors have

illustrated both the benefits and drawbacks of their

generator system and compared it to other

applications now available. There is a no cost

version of the program available.

Synthetic network data is sometimes generated by

apps [20]. Examples include a proposal by

Brodkorb et al. [21] to generate synthetic network

data in which nodes are associated with geo-

location. Thus, the user may experiment with the

produced network by interacting with the displayed

map, and then fine-tune the results.

To simulate water use in two cities, Konas et al.

[22] developed a technique for creating synthetic

data.

The developed technique logs the irregularity of a

household's daily water use and verifies the

accuracy of the resulting data using validation

algorithms that compare a number of evaluation

criteria on both actual and simulated data.

For the purpose of training and testing neural

networks, Sun et al. [23] explain the use of a

Gaussian matrix to simulate correlations between

the weights of a network. They also created and

used synthetic data alongside genuine data. Similar

work has been done by Kang et al. [24], who used

synthetic data to build tasks and put them through

their paces as test cases for multi-tasking learning.

In their presentation of a trained artificial neural

network, Ma et al. [25] noted that the synthetic data

allowed for a better analysis of the model's

durability with respect to its initialization and the

unpredictability of the data. Synthetic data

production in recent works has been accomplished,

however this data can't be used in another

application since it was generated for a different

issue.

Few works exist that can produce synthetic data

without the requirement for programming, hence

enabling the modification of data features and the

creation of complicated patterns in data abilities,

with the goal of evaluating instruments or machine

learning algorithms, or viewing the data with a

broad perspective.

III. PROPOSED APPLICATION

The primary objective of this paper is to provide a

data generating app that can be used to help

scientists evaluate data visualization and machine

learning methods. The Software that lets you play

around with statistical generators to get the

simulated data you need. Therefore, researchers

may easily replicate studies by exchanging

synthetic datasets and their associated descriptive

100

metadata with one others. As seen in Figure 1, the

tool's use ow chart.

The normal flow of the software includes three

stages: installation, actual usage, and sharing.

When a user generates a data model, they begin the

iterative process of creating a synthetic dataset

model (1). Specifying and composing generators to

construct a description of data behavior (such as a

correlation between specific dimensions or the

existence of outliers) is the process of developing a

data model. After making adjustments to the

generators, the program generates a short sample

dataset (2) to provide visual feedback on how the

data is behaving graphically (3). (4).

It should be noted that the data created in the

preview are not the same as those in the nal le; the

preview's only function is to provide a short look at

the behavior of the generators that the model will

use to construct the nal dataset.

After the initial configuration is complete, users

may either produce the data needed to test their

apps or they can choose to publish the data model

they created so that others can repeat their

experiments. In addition to generating a dataset le

that conforms to the model's generators, users can

also generate massive amounts of data if necessary

(5.1), feed the tested method or algorithm into a

streaming of data generation (5.2), and generate a

series of datasets that are nearly identical except for

a few minor differences in their features (5.3).

(5.3).

A user in this kind of data flow can decide to let

other researchers use the model they created to

recreate the first experiment (6).

Researchers that get this data model will have a

greater chance of their own own data collection

with distributions matching the ones used to

generate them (7). The data points are similar

because they exhibit the same properties and

behavior (e.g., same correlations, probabilities,

outliers), even when two datasets derived from the

same model are not identical due to the inherent

unpredictability of the creation process. This

facilitates rapid comparison of findings by allowing

researchers to quickly replicate experiments (8),

even when using enormous synthetic datasets (9).

SYSTEM ARCHITECTURE OVERVIEW

In Figure 2 we see a high-level perspective of the

app's framework:

The blue boxes show what kind of data was

created, while the gray boxes reflect the key

components. The you may get a brief model

explanation, a le with control data points, or a

visual representation of the data as output.

Requests made through the GUI are sent to the

management module, which is then responsible for

processing them and passing them along to the

appropriate submodules. This module cuts over

many other areas.

Controls the flow of data across an application by

acting as a go-between between the front end and

the back end (the interface and the logic behind

producing output, respectively). Each module is

comprised of the following parts:

This is an Iterator for a Set of Parameters:

Configurations; Saved States; DMC; VMC; Data

Manager; Data Manager; Communication

Manager; Visualization Manager;

101

2) MODEL OF DATA

The data model is responsible for managing the

dataset's data dimensions and the value generators.

This thing we call a "data model" is just a

representation of some kind, made up of details that

define how data acts. In addition to the whole, final

dataset, the data models may provide data samples,

which are smaller datasets (by default). size (in this

case, 100 rows) that all act in the same predefined

way. Data samples provide for visual feedback

since it is easy to see whether their properties meet

the testing criteria. Using the same data model to

generate many datasets (or data samples) yields

data that is comparable (i.e., has the same behavior)

but not identical (i.e., has different data values).

Sharing the data model that has been exported with

other researchers makes it simpler to replicate an

experiment, since the model is often smaller and

more manageable than a big dataset.

3) MEASUREMENTS

Each dimension in the data model has its own set of

generators. Data creation rules are stored in the

dimensions. Each of the four dimensions includes

the following fields: order number; title; data type;

and generator chain. Dimensional data might be

numerical, categorical, temporal, or mixed

depending on the creation rules connected with it.

GENERATORS,

Values are created and changed by the generators.

The Decorator pattern [26] enables a chain of

generators to be constructed in a sequential fashion.

Each parent and offspring generator is referenced

by each other generator, allowing for bidirectional

communication up and down the chain. The data

produced by each generator mimics a cascading

system in which the output of the parent generator

affects the output of the child generator.

The schematic of the generator chain, including its

inputs and outputs, is shown in Figure 3. During

setup, the user specifies parameters and an operator

() for each generator in the chain. The arguments

that generators need to create values (such as the

mean and standard deviation in Gaussian

generators) are the parameters. The operator may

be addition, subtraction, multiplication, division, or

modulo, and it combines the results from two

generators.

Given that r1 is the first step in a recursive process

and r! D v(i;j) is the output when the recursion

reaches the final generator g(j;!), the first step is

r1.

36 unique features are available in the current

version of the app data generators, each of which

has its own personality when it comes to producing

numerical output, which may shift based on the

output of its offspring. Accordingly, each

successive generator serves as a building block

from which a user may create their own distribution

of data. Random, geometric, auxiliary, functional,

and sequence generators are the five most common

kinds.

a: THE RNGs generate each new value

independently and arbitrarily according to some

probability density or rule. For instance, the

Uniform generator generates values between a

minimum min and maximum max values with the

same probability to any value in the range, while

the Gaussian generator generates values based on a

predened mean and standard deviation. Using the

user-defined methods, random generators may be

combined to produce novel distributions (for

instance, a uniform distribution might be added to a

Gaussian distribution to produce a new

distribution).

As seen in Table 1, the program provides a number

of different random number generators. Both real R

and categorical C constants are acceptable for the

102

params. The probability density functions

underlying the value creation process are seen in

the output column.

In b, THE GEOMETRIC GENERATORS generate

numbers based on geometrical building blocks. The

user specifies parameters of forms in spaceR2, and

the generator outputs data points in accordance

with the pattern.

The output is not a value on, but rather an ordered

pair, since geometric forms are specified on the

space R2, which means that a single data

dimension cannot describe the values (on1; on2).

This additional data dimension is required to

produce the 2-dimensional data.

When a Geometric generator is assigned to a

dimension's generator chain, it only returns the first

element on1 of the ordered pair. The second

element on2 of the pair may be generated with the

help of a special generator called Get Extra; its

behavior is described in more depth in the section

on Accessory generators.

In Table 2 we see a catalog of Geometric

generators. Constants (a1, a2, and a3) of real R type

are used to define the parameters.

in how the forms act, like where the controls are.

Each generator's output column depicts an

illustration of the data point distribution inside the

specified shape.

How to utilize the geometric generators is shown in

Figure 4.

In order to generate a Cubic Bezier Stroke, the first

element on1 of the pair is given the dimension D1.

The second piece, on2, is obtained using a Get

Extra Accessory and linked to dimension D2. The

user has the option of making individual chains for

each dimension, such as limiting noise to D2.

The ACCESSORY GENERATORS are the ones in

charge of tweaking the results of the main

generators. The Missing Value Accessory, for

instance, is the component that shuffles and

randomly modifies the input data.

missing values, with the user able to choose the

proportion of values to be created by the child

generator.

Deterministic results (MinMax, Linear, etc.) are

possible at. Measurement Scale), or stochastic (e.g.,

Constant Noises, Missing Values).

103

Since generators may only generate a single value

at a time, they can only return a single element

from an n-tuple (a1; a2;::: ; an), in this case a1.

With the use of a Get Extra Accessory, you may

extract a single item from the tuple that is returned,

giving you access to all of its children.

Therefore, n1 additional dimensions with a Get

Extra Accessory in each must be constructed so

that all values of an n-tuple generator may be

accessed.

The characteristics and outputs of each Accessory

generator are listed in Table 3. Parameters (a1, a2,

and a3) are constants of many possible types (real

R, probability P, and natural N). The noise's

probability distribution, denoted by r(), is an extra

factor to consider when dealing with random noise

(e.g., Gaussian or uniform).

To get a fresh value, the accessory will call the

child ch(A) again if the value it received does not

meet the limitations it was designed for (for

example, if Range Filter gets a value outside the

range).

To create associated dimensions, d: THE

FUNCTION GENERATORS convert the values

produced in one dimension into another.

A Function generator requires the user to provide

the

To make related dimensions, the d: THE

FUNCTION GENERATORS transfer the values

generated in one dimension onto another.

In order for a Function generator to work, the user

must input

There is a switch-case function between the

Categorical, Piecewise Time, and Piecewise

generators, with a unique set of generators for each

of the three possible outcomes. Given that z is the

total,

The Function generator ramies the chain into z

offspring, denoted by ch1, ch2,..., chz, in the

switch-case. The value dn of another dimension is

utilized to determine which children are used to

create the output on.

e: THE SEQUENCE GENERATORS produce

numbers by following an algorithm that takes as

inputs the parameters (a1; a2;::: ; az), the data index

(n), and the preceding number (on1). The

sequences might be arithmetic, geometric, or

recursive, and they can have properties like being

rising or decreasing, having convergent values, or

being constrained to a finite set of values.

104

The application's current roster of Sequence

generators is shown in Table 5. The parameters

may be of any of many different types: mixed M,

real R, temporal T, categorical C, or natural N.

The Poisson distribution parameter is also needed

by the Poisson Time Sequence Generator.

When the first value in a series, o1, depends on the

value of an earlier step in the sequence, that earlier

step must have been created. The Sinusoidal

generator's starting value, c1, is determined by past

angles, cn, rather than by outputs.

Custom sequence logic is defined by the user

through a textual rule that specifies the values of

each on based on arithmetic operations (such as

addition, subtraction, multiplication, and division),

the preceding value x D on1, and the data index n.

To generate a counter sequence where each value is

equal to its index, the user need just provide "n" as

the text rule.

5) OUTPUT DATA

When the data model is complete, the user may

choose between many different export methods.

data export, data model export, web service data

streaming, and data export specification.

Users may initiate the generation process to store

data points into the le system after the data model is

prepared to build the nal dataset. Another option is

for the system to create data in real time through a

Web Service, where it would be generated and

supplied in response to requests made via URLs.

The system may produce a JSON (JavaScript

Object Notation) representation of the model if the

user simply wishes to export the model and not the

whole dataset. All of the model's generators,

operators, and parameters are recorded in a

compact hierarchical JSON le that can be imported

into the system at a later time to restore the data

model.

It is also possible to export the data model using a

DOT file.

le, which can then be imported into GraphViz [27]

to create a model diagram that is understandable to

humans.

User interface (B)

The GUI's seven most notable features are shown

in Figure 5 below. A menu bar, B tabs for currently

open models, C a setup window, D a panel for

configuring the generator and dimensions, D a

preview of the data, and F a button to generate the

model (G).

In Figure 5 (A), we see the application's menu bar,

which includes the options File > Edit > Data

Model > Visualize > Help.

New Model, New Dimension, Open Model, Save

Model, Save Model As, and Import Dataset may all

be found under the File menu. In the Edit menu,

you may choose between Undo and Redo. Data

samples from the current model may be seen in a

number of different visualization formats, all of

which are accessible through the Visualize menu:

bar chart, histogram, scatterplot matrix, beeswarm

plot, treemap, sunburst, parallel coordinates, and

bundled parallel coordinates [28, 29]. You may

rename, delete, or export your model from the

Model menu. Toggle Web Service, Open Web

Service, Toggle Web Service, and Copy Web

Service URI are all examples of DOT Files.

Tabs of open models are shown in Figure 5 (B).

Every tab has its own setup panel (C) with data

model specifications such dimension titles and

types, generator chains, and useful buttons like lter,

105

add generator, remove generator, and delete

dimension. The C button, located in the panel's

lower right corner, allows users to give their

models an extra dimension. It's also feasible to

rearrange and reposition generators. Dimensions

may be ltered out by the user, causing them to be

removed from both the preview and the final

dataset. When a user clicks on a generator, details

about that generator, as well as the dimension (E) it

belongs to, are presented (D).

The operator and settings for the generator are set

in the generator properties panel (D). The Data

Preview panel (F) refreshes a parallel coordinates

representation of the data samples after any

modifications to the model, providing

instantaneous visual feedback on data behavior.

Selecting the blue "generate" (G) button in the

lower-right corner of the window will launch a

dialogue where you may specify the name, path,

and length of your final dataset.

When you click the settings cog, a box opens up

where you may adjust the Parameter Iterator's

settings, which in turn produce a series of datasets

with variable parameters.

Data samples from the model may be seen using

the system's built-in visualization analysis tool

(Menu > Visualize), in addition to the Preview

Panel. This function is crucial because it allows the

user to see in real time whether the data model is

producing accurate results.

Users may pick and select the visualizations they

want to work with in the visualization window,

which can be a separate window from the primary

one. As can be seen in Figure 6, the visualization

window has a flexible layout, enabling the user to

expand each visualization by moving the dotted

line and even divide an area to add additional ones.

Data objects from multiple views may be more

easily related because to the consistent use of color,

filtering, and selection across representations.

The user may also utilize several monitors to see

many windows simultaneously.

IV. USAGE SCENARIOS - GENERATING

DATASETS FOR

MACHINE LEARNING CLASSIFICATION

As an example of how to construct a test dataset for

machine learning with variance in certain data

attributes, consider the following situation.

Therefore, the proposed instrument will produce

data sets.

Adjusting the number of classes, the number of

outliers, the distance between classes, the

percentage of missing data, the distribution of

undesirable features, and the number of classes [31,

37].

Variations are specified on top of a standard dataset

that contains the following features:

One thousand entries

0 exceptional cases

There are no blanks in this data.

One class and one important feature; no irrelevant

characteristics are included.

80% Distinction between socioeconomic groups

Separate Tracks

Absence of Economic Disparity

Figure 7 depicts the procedure by which the system

creates this predefined data collection. When

mapping the class dimension (Dimension 1) to the

feature dimension (Dimension 2), a Categorical

Function acts as a decision point (Dimension 2).

Parameters for the Uniform generator embedded in

the Dimension 2 chains are class A1's Min D = 0

106

and Max D = 1:2, and class A2's Min D = 1 and

Max D = 2. With these settings, there will be

overlap of 20% in the feature dimension, resulting

in only 80% class separation.

Therefore, six distinct datasets were produced, one

for each of the six attributes in the default dataset.

Systematically, the system produced four datasets

for each dataset type, each with a tiny variation in

the target attribute. The system generated datasets,

for instance, to adjust the impact of the total

number of outliers.

AMOUNT OF OUTLIERS

The percentage of data points that are outliers is

represented by the Amount of Outliers. Figure 8

demonstrates how to utilize the Noise Generator to

generate the extreme values. There was some

conjuring involved in making the noise generator

work to modify the initial value by adding a

uniformly distributed Gaussian noise with a mean

of zero and a standard deviation of one, multiplied

by 20 (the "force parameter"). The noise frequency

ranged from ten percent to forty percent.

In Figure 9, we see examples of these created

datasets with varied numbers of outliers. Most of

the information is between 0 and 1.8, with a few

outliers at each end of the scale.

In Figure 8, found in the box labeled "Noise," we

observe the relationship between the 'Prob'

parameter and the number of outliers increasing

from 10% to 40% graphically shown.

CLASS SEPARATION

The degree to which the distributions of two or

more classes overlap is measured by the Class

Separation feature. Parameters (Min and Max) of

the Uniform Distribution Function are shown in

Figure 10.

Altering the parameters of the generators allows for

the introduction of a crossover in the distributions

produced. For instance, in order to establish social

stratification

107

Distinction between the groups is seen in Figure

11.

The Histogram displays the total value for each

category in the dataset, with a distinct break at the

96th percentile (0:96).

separation. From that point on, the intermixing of

the various categories' distributions will rise. This

data might be used to examine the hypothesis that

as class overlap grows, so does classifier accuracy

AMOUNT OF MISSING VALUES

The percentage of blank cells in a dataset

represents the number of missing values. This

feature is generated via the MCAR (Missing

Completely at Random) generator, as seen in

Figure 12.

Using the probability specified by the parameter

"Prob," this generator takes the output of another

generator (here, a Uniform generator) and replaces

it with a missing value.

Datasets with blank cells are shown in Figure 13.

Dimension 2's red hue represents a 10% to 40%

shift in values, and the red color itself maps the

missing values.

grows as the class stays the same, which is what we

want to see when we test out various classication

methods with missing data. To keep the visuals

from becoming too busy, we reduced the red's

opacity to 0.2.

8th Annual Volume, 2020, 82925

The created datasets might be used to assess a

classifier's ability to cope with missing values in

features. It's possible that other sources of missing

values exist.

Methodological frameworks, such as the MAR, that

are provided (Missing at Random).

The imputation techniques might be put to the test

with this data as well.

CLASS IMBALANCE

Class Imbalance measures how evenly distributed

the data is amongst the different categories.

Because of the disparity in class, there are a

number of hypotheses that might be explored using

new methods in classication [38].

Using the percentage of occurrence in the dataset as

its weight (or probability), the Weighted

Categorical generator provides this feature (see

Figure 14).

108

On beeswarm plots, as shown in Figure 15, there is

an obvious gender and age disparity.

When everything is in equilibrium, the two

distributions have the same thickness on the plot,

but as the imbalance begins, they begin to diverge.

To evolve into something new. The thickness of A1

is substantially lowered while the thickness of A2

is increased in the end (20%-80%)

BAD FEATURES

The quantity of characteristics that have no

connection to the class (i.e., are bad) is what is

meant by the term "Bad Features." so that it might

be included in the canon of classic literature.

Adding dimensions using Uniform Generators is

sufficient (see Figure 16) since the dimensions are

not connected.

The flaws of a Parallel Coordinates are shown in

Figure 17.

The excellent feature shows a striking visual

difference, and

Inconsistent and uninteresting designs are used to

illustrate the poor quality of the features. A

classifier's ability to distinguish between useful and

non-useful characteristics might be evaluated using

such data sets.

AMOUNT OF CLASSES

The quantity of classes is the total number of class

dimensions. You can see how the Categorical

Generator takes in a wide variety of categories in

Figure 18.

Beeswarm plot class counts are shown binned in

Figure 19. Each group is represented by a different

hue, and their relative placement is also indicated.

Class plots become quite tiny beyond 22 classes,

yet data distribution shows clear distinction

between groups. These data sets might be used to

see whether classifiers perform well under high-

volume classification.

109

classes, also test if the accuracy of classi_ers

remains balanced between classes.

V. CONCLUSION

In this study, a synthetic data generator was

introduced to test data visualization tools and

machine learning algorithms. The program is very

adaptable and provides the flexibility to build

unique generation proles from a variety of

distribution primitives, including but not limited to

uniform and normal distributions. The included

tools, functions, sequences, and geometric

generators make it possible to create extremely

individualized data sets.

The ability to import and export the descriptive

model le is a big boon to the repeatability of

scientific studies.

To facilitate integration of the system and the data

it generates with other applications, the software

provides a web service for receiving and processing

data in a continuous stream.

In addition, this article demonstrates how the

program may be put to work in the context of

testing various machine learning approaches.

This demonstrated the feasibility of generating

novel datasets, giving the user command over

recurrent issues in machine learning projects. The

built-in graphics for each case study demonstrate

the tool's reliability in verifying circumstance that

arises.

The process of separating generators from actual

data is a potential direction for future research. An

idiom may be developed from the modeling

language that defines the composition of a chain of

generators, which can then be used to the study of

the behavior of actual data. If this barrier could be

overcome, it would be possible to construct

synthetic data from genuine ones by altering the

characteristics that drive their distributions.

Machine learning methods may also be used to

improve the realism of synthetic data generation by

include noises that occur naturally in actual data

without significantly altering the distribution

underlying the data.

In addition, the authors plan to incorporate: a

constant seed to allow for the generation of a

unique dataset, new visualizations for data

validation, and new interaction possibilities, such

as zoom in/out, lter, and re-ordering; more types of

generators; and new ways to display generators to

facilitate the understanding of the model's design.

In addition, future work may include a visual or

quantitative comparison component for verification

or comparison. In addition, the system will make

use of real-world data to model similar synthetic

data, which the user may then compare to the

original.

REFERENCES

[1] B. S. Santos and P. Dias, ``Evaluation in

visualization: Some issues and best practices,'' Vis.

Data Anal., vol. 9017, Feb. 2013, Art. no. 90170O.

[Online]. Available:

http://proceedings.spiedigitallibrary.org/proceeding

aspx?doi=10.1117/12.2038259

[2] B. S. Santos, ``Evaluating visualization

techniques and tools: What are the main issues?'' in

Proc.Workshop Beyond Time Errors Novel Eval.

Methods Vis. (BELIV), 2008, pp. 1_2.

http://proceedings.spiedigitallibrary.org/proceeding

110

[3] R. Redpath and B. Srinivasan, ``Criteria for a

comparative study of visualization techniques in

data mining,'' in Intelligent Systems Design and

Applications. Berlin, Germany: Springer, 2003, pp.

609_620.

[4] H. Lam, E. Bertini, P. Isenberg, C. Plaisant, and

S. Carpendale, ``Empirical studies in information

visualization: Seven scenarios,'' IEEE Trans. Vis.

Comput. Graphics, vol. 18, no. 9, pp. 1520_1536,

Sep. 2012.

[5] S. Liu, W. Cui, Y. Wu, and M. Liu, ``A survey

on information visualization: Recent advances and

challenges,'' Vis. Comput., vol. 30, no. 12, pp.

1373_1393, Dec. 2014.

[6] Y. P. dos Santos Brito, C. G. R. dos Santos, S.

de Paula Mendonca, T. D. Araujo, A. A. de Freitas,

and B. S. Meiguins, ``A prototype application to

generate synthetic datasets for information

visualization evaluations,'' in Proc. 22nd Int. Conf.

Inf. Vis. (IV), Jul. 2018, pp. 153_158.

[7] S. Popi¢, B. Pavkovi¢, I. Veliki¢, and N. Tesli¢,

``Data generators: A short survey of techniques and

use cases with focus on testing,'' in Proc. IEEE 9th

Int. Conf. Consum. Electron. (ICCE-Berlin), Sep.

2019, pp. 189_194.

[8] R. A. DeMilli and A. J. Offutt, ``Constraint-

based automatic test data generation,'' IEEE Trans.

Softw. Eng., vol. 17, no. 9, pp. 900_910, Sep. 1991.

[9] M. Mann, O. P. Sangwan, P. Tomar, and S.

Singh, ``Automatic goaloriented test data

generation using a genetic algorithm and simulated

annealing,'' in Proc. 6th Int. Conf.-Cloud Syst. Big

Data Eng. (Con_uence), Jan. 2016, pp. 83_87.

[10] S. Rani and B. Suri, ``An approach for test

data generation based on genetic algorithm and

delete mutation operators,'' in Proc. 2nd Int. Conf.

Adv. Comput. Commun. Eng. (ICACCE), May

2015, pp. 714_718.

[11] G. Albuquerque, T. Lowe, and M. Magnor,

``Synthetic generation of highdimensional

datasets,'' IEEE Trans. Vis. Comput. Graphics, vol.

17, no. 12, pp. 2317_2324, Dec. 2011.

[12] B.Wang, P. Ruchikachorn, and K. Mueller,

``SketchPadN-D: WYDIWYG sculpting and

editing in high-dimensional space,'' IEEE Trans.

Vis. Com-put. Graphics, vol. 19, no. 12, pp.

2060_2069, Dec. 2013.

[13] B. C. Kwon, H. Kim, E. Wall, J. Choo, H.

Park, and A. Endert, ``AxiSketcher: Interactive

nonlinear axis mapping of visualizations through

user drawings,'' IEEE Trans. Vis. Comput.

Graphics, vol. 23, no. 1, pp. 221_230, Jan. 2017.

[14] R. Liu, B. Fang, Y. Y. Tang, and P. P. K.

Chan, ``Synthetic data generator

for classi_cation rules learning,'' in Proc. 7th Int.

Conf. Cloud Comput. Big Data (CCBD), Nov.

2016, pp. 357_361.

[15] P. J. Lin, B. Samadi, A. Cipolone, D. R. Jeske,

S. Cox, C. Rendón, D. Holt, and R. Xiao,

``Development of a synthetic data set generator for

building and testing information discovery

systems,'' in Proc. 3rd Int. Conf. Inf. Technol., New

Gener. (ITNG), 2006, pp. 707_712.

[16] D. R. Jeske, P. J. Lin, C. Rendón, R. Xiao, and

B. Samadi, ``Synthetic data generation capabilties

for testing data mining tools,'' in Proc. IEEE Mil.

Commun. Conf. (MILCOM), Oct. 2007, pp. 1_6.

[17] M. Pasinato, C. E. Mello, M.-A. Aufaure, and

G. Zimbrão, ``Generating synthetic data for

context-aware recommender systems,'' in Proc. 1st

BRICS Countries Congr. Comput. Intell. (BRICS-

CCI), Sep. 2013, pp. 563_567.

[18] J. Dahmen and D. Cook, ``SynSys: A

synthetic data generation system for healthcare

applications,'' Sensors, vol. 19, no. 5, p. 1181,

2019.

[19] D. García and M. Millán, ``A prototype of

synthetic data generator,'' in Proc. 6th Colombian

Comput. Congr. (CCC), May 2011, pp. 1_6.

[20] Graph Generation With Prescribed Feature

Constraints, Soc. Ind. Appl. Math., Philadelphia,

PA, USA, Apr. 2009.

