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ABSTRACT

Applications known as "data generators" create artificial datasets that can be used to test data analytics tools including machine 

learning algorithms and information visualization approaches. The method used to generate data varies depending on the data generator 

application. As a result, each one has functional shortcomings that prevent it from being used for certain purposes (e.g., lack of ways to 

create outliers and non-random noise). The data generator application described in this work intends to fill in any pertinent gaps left by 

previous programs and offers a flexible tool to let researchers rigorously test their methods in various contexts. The suggested approach 

enables users to define and combine well-known statistical distributions to get the required result, visualizing the data's behavior in real-

time to determine whether it possesses the necessary properties. 

INDEX TERMS: Data production system, creation of synthetic datasets, and creation of benchmark datasets. 

INTRODUCTION 

Using actual data is the best case scenario for 

evaluating machine learning algorithms and data 

visualization methods. 

Nonetheless, getting the data might be a significant 

challenge, given that acquiring this information can 

take a while, cost money, or compromise your 

privacy. This situation forces researchers to 

repeatedly employ the same, well-established 

dataset. Researchers are either manually 

constructing synthetic datasets or developing tools 

to help this work in an attempt to overcome these 

difficulties. 

Researchers utilize these programs to gain more 

command over the features of their data, allowing 

them to tailor datasets to tackle targeted issues such 

outlier identification, missing values, and noisy 

data. [1], [2]. 

Often referred to simply as "data generators," 

synthetic data applications are computer programs 

that alter the identifying characteristics of data 

using mathematical algorithms. 
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It was Shahzad Mumtaz, an associate editor at the 

journal, who oversaw the review process and gave 

final approval before the submission was 

published. 

Several types of generators, including those for 

probability distributions, sets of categories, and so 

forth. Some generators let users can save a 

description of generators, which are often 

lightweight les, rather than specific data pieces, 

making it easy to share a blueprint of the created 

dataset with others. 

There are several advantages to using a synthetic 

dataset generator, one of which is the ability to 

manipulate data features including patterns, trends, 

data type, format, outliers, dimensions, and missing 

values. 

[3]. In order to thoroughly evaluate visualization 

strategies or machine learning algorithms in a 

controlled environment, data generators may 

manipulate data elements such that their properties 

address a specific issue [4, 5]. In certain generators, 

for instance, researchers may examine not only 

whether the method can withstand the presence of 

outliers, but also at what threshold of outlier 

percentage it can function well. 

However, there is currently no software that can 

generate data perfectly. 

As more and more solutions are developed, it gets 

increasingly difficult to choose the most 

appropriate one. That's so tough due of the 

constraints that 

The easiest way to judge the efficacy of a machine 

learning algorithm or a data visualization technique 

is to use real-world examples. 

However, obtaining the information might prove to 

be quite difficult, considering the time, effort, and 

maybe even privacy risks involved in gathering 

such data. As a result, scientists have little choice 

but to keep using the same reliable data set. In an 

effort to get around these problems, researchers are 

either manually producing synthetic datasets or 

using technologies to aid in this job. 

In order to address specific problems, such locating 

outliers, filling in missing values, and cleaning up 

noisy data, researchers use these tools to acquire 

more control over the characteristics of their data. 

[1], [2]. 

Synthetic data applications are computer programs 

that change the identifying properties of data using 

mathematical procedures, and are sometimes 

referred to as "data generators." 

Journal assistant editor Shahzad Mumtaz handled 

the review process and provided final permission 

before publication. 

Several sorts of generators, such as those for 

generating sets of categories, random numbers, and 

other distributions, and so on. Rather of saving 

individual data bits, some generators let users can 

record a description of generators, which are 

typically lightweight les, making it simple to share 

a blueprint of the produced dataset with others. 

The flexibility to change things like patterns, 

trends, data type, format, outliers, dimensions, and 

missing values is only one of the many benefits of 

employing a synthetic dataset generator. 

[3]. Data generators may alter data items such that 

their attributes address a particular problem [4, 5] 

in order to conduct in-depth evaluations of 

visualization tactics or machine learning algorithms 

in a controlled setting. For example, in the case of 

particular generators, scientists may look at not 

only how effectively the approach handles outliers, 

but also at what percentage of outliers it continues 

to perform well. 

Unfortunately, there is no ideal data-generating 

program available right now. 

As more options become available, it becomes 

more challenging to choose on the best one. That's 

difficult because of severe limitations. 

II. RELATED WORKS 

Many fields in computing, including data 

visualization, data mining, software engineering, 

and artificial intelligence, recognize the value of 

generating synthetic datasets for testing purposes. 

Sran Popi et al. [7] conducted a literature review on 

the topic of synthetic data creation with an 

emphasis on application testing; they focused on 

the system designs and the intended use of the 

apps, and they outlined the benefits and drawbacks 

of the various methodologies they looked at. A 

failure-based application to produce synthetic data 



99 
 

units for testing software modules has been 

presented by Demillo and Offut [8]. There are 

genetic algorithm works in evolutionary computing 

[9], [10] that create data for software testing. 

Multidimensional data may be generated using the 

methodology proposed by Albuquerque et al. [11]. 

By adjusting statistical distributions through a 

graphical user interface, the user may create a 

model that accurately represents the data of 

interest. However, [11] only deals with integer and 

oating numbers, therefore it doesn't cover the 

production of categorical data. And, [11] didn't 

During the statistical distribution setup, if there is a 

method to get a preview of the data that shows how 

it could behave, please provide that information. 

Wang et al. [12] have shown a program in which 

the user may hand-draw the data distribution. 

Because of this, the system builds the generators' 

data model from the user's sketches. A similar 

method was taken by Kwon et al. [13], who relied 

on design-based interactions to direct the 

development of a multi-dimensional data 

visualization depending on the expertise of the 

viewer. 

To evaluate learning rules classication, Liu [14] 

developed a synthetic data generator. Using a 

method called decision tree algorithms, the work 

produces learning rules based on the characteristics 

given by the user in order to construct associations 

between these qualities. Similarly minded 

publications [15, 16], [17] have also surfaced in the 

literature suggesting data synthesizers for use in 

data mining applications. Since getting actual data 

might be prohibitively expensive or restricted by 

privacy concerns, these initiatives produce data for 

testing in data mining technologies. But there are 

occupations that create data for specific challenges, 

as [18] who published a paper on the data 

production system for healthcare applications, and 

these jobs often restrict the creation of new data to 

those specific domains. 

The technique developed by Garca and Millán [19] 

to produce synthetic data is applicable to many 

different fields of study. The authors have 

illustrated both the benefits and drawbacks of their 

generator system and compared it to other 

applications now available. There is a no cost 

version of the program available. 

Synthetic network data is sometimes generated by 

apps [20]. Examples include a proposal by 

Brodkorb et al. [21] to generate synthetic network 

data in which nodes are associated with geo-

location. Thus, the user may experiment with the 

produced network by interacting with the displayed 

map, and then fine-tune the results. 

To simulate water use in two cities, Konas et al. 

[22] developed a technique for creating synthetic 

data. 

The developed technique logs the irregularity of a 

household's daily water use and verifies the 

accuracy of the resulting data using validation 

algorithms that compare a number of evaluation 

criteria on both actual and simulated data. 

For the purpose of training and testing neural 

networks, Sun et al. [23] explain the use of a 

Gaussian matrix to simulate correlations between 

the weights of a network. They also created and 

used synthetic data alongside genuine data. Similar 

work has been done by Kang et al. [24], who used 

synthetic data to build tasks and put them through 

their paces as test cases for multi-tasking learning. 

In their presentation of a trained artificial neural 

network, Ma et al. [25] noted that the synthetic data 

allowed for a better analysis of the model's 

durability with respect to its initialization and the 

unpredictability of the data. Synthetic data 

production in recent works has been accomplished, 

however this data can't be used in another 

application since it was generated for a different 

issue. 

Few works exist that can produce synthetic data 

without the requirement for programming, hence 

enabling the modification of data features and the 

creation of complicated patterns in data abilities, 

with the goal of evaluating instruments or machine 

learning algorithms, or viewing the data with a 

broad perspective. 

III. PROPOSED APPLICATION 

The primary objective of this paper is to provide a 

data generating app that can be used to help 

scientists evaluate data visualization and machine 

learning methods. The Software that lets you play 

around with statistical generators to get the 

simulated data you need. Therefore, researchers 

may easily replicate studies by exchanging 

synthetic datasets and their associated descriptive 
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metadata with one others. As seen in Figure 1, the 

tool's use ow chart. 

 

The normal flow of the software includes three 

stages: installation, actual usage, and sharing. 

When a user generates a data model, they begin the 

iterative process of creating a synthetic dataset 

model (1). Specifying and composing generators to 

construct a description of data behavior (such as a 

correlation between specific dimensions or the 

existence of outliers) is the process of developing a 

data model. After making adjustments to the 

generators, the program generates a short sample 

dataset (2) to provide visual feedback on how the 

data is behaving graphically (3). (4). 

It should be noted that the data created in the 

preview are not the same as those in the nal le; the 

preview's only function is to provide a short look at 

the behavior of the generators that the model will 

use to construct the nal dataset. 

After the initial configuration is complete, users 

may either produce the data needed to test their 

apps or they can choose to publish the data model 

they created so that others can repeat their 

experiments. In addition to generating a dataset le 

that conforms to the model's generators, users can 

also generate massive amounts of data if necessary 

(5.1), feed the tested method or algorithm into a 

streaming of data generation (5.2), and generate a 

series of datasets that are nearly identical except for 

a few minor differences in their features (5.3). 

(5.3). 

A user in this kind of data flow can decide to let 

other researchers use the model they created to 

recreate the first experiment (6). 

Researchers that get this data model will have a 

greater chance of their own own data collection 

with distributions matching the ones used to 

generate them (7). The data points are similar 

because they exhibit the same properties and 

behavior (e.g., same correlations, probabilities, 

outliers), even when two datasets derived from the 

same model are not identical due to the inherent 

unpredictability of the creation process. This 

facilitates rapid comparison of findings by allowing 

researchers to quickly replicate experiments (8), 

even when using enormous synthetic datasets (9). 

SYSTEM ARCHITECTURE OVERVIEW 

In Figure 2 we see a high-level perspective of the 

app's framework: 

The blue boxes show what kind of data was 

created, while the gray boxes reflect the key 

components. The you may get a brief model 

explanation, a le with control data points, or a 

visual representation of the data as output.

 

Requests made through the GUI are sent to the 

management module, which is then responsible for 

processing them and passing them along to the 

appropriate submodules. This module cuts over 

many other areas. 

Controls the flow of data across an application by 

acting as a go-between between the front end and 

the back end (the interface and the logic behind 

producing output, respectively). Each module is 

comprised of the following parts: 

This is an Iterator for a Set of Parameters: 

Configurations; Saved States; DMC; VMC; Data 

Manager; Data Manager; Communication 

Manager; Visualization Manager; 
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2) MODEL OF DATA 

The data model is responsible for managing the 

dataset's data dimensions and the value generators. 

This thing we call a "data model" is just a 

representation of some kind, made up of details that 

define how data acts. In addition to the whole, final 

dataset, the data models may provide data samples, 

which are smaller datasets (by default). size (in this 

case, 100 rows) that all act in the same predefined 

way. Data samples provide for visual feedback 

since it is easy to see whether their properties meet 

the testing criteria. Using the same data model to 

generate many datasets (or data samples) yields 

data that is comparable (i.e., has the same behavior) 

but not identical (i.e., has different data values). 

Sharing the data model that has been exported with 

other researchers makes it simpler to replicate an 

experiment, since the model is often smaller and 

more manageable than a big dataset. 

3) MEASUREMENTS 

Each dimension in the data model has its own set of 

generators. Data creation rules are stored in the 

dimensions. Each of the four dimensions includes 

the following fields: order number; title; data type; 

and generator chain. Dimensional data might be 

numerical, categorical, temporal, or mixed 

depending on the creation rules connected with it. 

GENERATORS, 

Values are created and changed by the generators. 

The Decorator pattern [26] enables a chain of 

generators to be constructed in a sequential fashion. 

Each parent and offspring generator is referenced 

by each other generator, allowing for bidirectional 

communication up and down the chain. The data 

produced by each generator mimics a cascading 

system in which the output of the parent generator 

affects the output of the child generator. 

The schematic of the generator chain, including its 

inputs and outputs, is shown in Figure 3. During 

setup, the user specifies parameters and an operator 

() for each generator in the chain. The arguments 

that generators need to create values (such as the 

mean and standard deviation in Gaussian 

generators) are the parameters. The operator may 

be addition, subtraction, multiplication, division, or 

modulo, and it combines the results from two 

generators. 

 

 

Given that r1 is the first step in a recursive process 

and r! D v(i;j) is the output when the recursion 

reaches the final generator g(j;! ), the first step is 

r1. 

36 unique features are available in the current 

version of the app data generators, each of which 

has its own personality when it comes to producing 

numerical output, which may shift based on the 

output of its offspring. Accordingly, each 

successive generator serves as a building block 

from which a user may create their own distribution 

of data. Random, geometric, auxiliary, functional, 

and sequence generators are the five most common 

kinds. 

a: THE RNGs generate each new value 

independently and arbitrarily according to some 

probability density or rule. For instance, the 

Uniform generator generates values between a 

minimum min and maximum max values with the 

same probability to any value in the range, while 

the Gaussian generator generates values based on a 

predened mean and standard deviation. Using the 

user-defined methods, random generators may be 

combined to produce novel distributions (for 

instance, a uniform distribution might be added to a 

Gaussian distribution to produce a new 

distribution). 

As seen in Table 1, the program provides a number 

of different random number generators. Both real R 

and categorical C constants are acceptable for the 
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params. The probability density functions 

underlying the value creation process are seen in 

the output column. 

In b, THE GEOMETRIC GENERATORS generate 

numbers based on geometrical building blocks. The 

user specifies parameters of forms in spaceR2, and 

the generator outputs data points in accordance 

with the pattern. 

The output is not a value on, but rather an ordered 

pair, since geometric forms are specified on the 

space R2, which means that a single data 

dimension cannot describe the values (on1; on2). 

This additional data dimension is required to 

produce the 2-dimensional data. 

When a Geometric generator is assigned to a 

dimension's generator chain, it only returns the first 

element on1 of the ordered pair. The second 

element on2 of the pair may be generated with the 

help of a special generator called Get Extra; its 

behavior is described in more depth in the section 

on Accessory generators. 

In Table 2 we see a catalog of Geometric 

generators. Constants (a1, a2, and a3) of real R type 

are used to define the parameters. 

 

 

in how the forms act, like where the controls are. 

Each generator's output column depicts an 

illustration of the data point distribution inside the 

specified shape. 

How to utilize the geometric generators is shown in 

Figure 4. 

In order to generate a Cubic Bezier Stroke, the first 

element on1 of the pair is given the dimension D1. 

The second piece, on2, is obtained using a Get 

Extra Accessory and linked to dimension D2. The 

user has the option of making individual chains for 

each dimension, such as limiting noise to D2. 

The ACCESSORY GENERATORS are the ones in 

charge of tweaking the results of the main 

generators. The Missing Value Accessory, for 

instance, is the component that shuffles and 

randomly modifies the input data. 

 

missing values, with the user able to choose the 

proportion of values to be created by the child 

generator. 

Deterministic results (MinMax, Linear, etc.) are 

possible at. Measurement Scale), or stochastic (e.g., 

Constant Noises, Missing Values). 
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Since generators may only generate a single value 

at a time, they can only return a single element 

from an n-tuple (a1; a2;::: ; an), in this case a1. 

With the use of a Get Extra Accessory, you may 

extract a single item from the tuple that is returned, 

giving you access to all of its children. 

Therefore, n1 additional dimensions with a Get 

Extra Accessory in each must be constructed so 

that all values of an n-tuple generator may be 

accessed. 

The characteristics and outputs of each Accessory 

generator are listed in Table 3. Parameters (a1, a2, 

and a3) are constants of many possible types (real 

R, probability P, and natural N). The noise's 

probability distribution, denoted by r(), is an extra 

factor to consider when dealing with random noise 

(e.g., Gaussian or uniform). 

To get a fresh value, the accessory will call the 

child ch(A) again if the value it received does not 

meet the limitations it was designed for (for 

example, if Range Filter gets a value outside the 

range). 

 

To create associated dimensions, d: THE 

FUNCTION GENERATORS convert the values 

produced in one dimension into another. 

A Function generator requires the user to provide 

the 

To make related dimensions, the d: THE 

FUNCTION GENERATORS transfer the values 

generated in one dimension onto another. 

In order for a Function generator to work, the user 

must input 

 

There is a switch-case function between the 

Categorical, Piecewise Time, and Piecewise 

generators, with a unique set of generators for each 

of the three possible outcomes. Given that z is the 

total, 

The Function generator ramies the chain into z 

offspring, denoted by ch1, ch2,..., chz, in the 

switch-case. The value dn of another dimension is 

utilized to determine which children are used to 

create the output on. 

e: THE SEQUENCE GENERATORS produce 

numbers by following an algorithm that takes as 

inputs the parameters (a1; a2;::: ; az), the data index 

(n), and the preceding number (on1). The 

sequences might be arithmetic, geometric, or 

recursive, and they can have properties like being 

rising or decreasing, having convergent values, or 

being constrained to a finite set of values. 
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The application's current roster of Sequence 

generators is shown in Table 5. The parameters 

may be of any of many different types: mixed M, 

real R, temporal T, categorical C, or natural N. 

The Poisson distribution parameter is also needed 

by the Poisson Time Sequence Generator. 

When the first value in a series, o1, depends on the 

value of an earlier step in the sequence, that earlier 

step must have been created. The Sinusoidal 

generator's starting value, c1, is determined by past 

angles, cn, rather than by outputs. 

Custom sequence logic is defined by the user 

through a textual rule that specifies the values of 

each on based on arithmetic operations (such as 

addition, subtraction, multiplication, and division), 

the preceding value x D on1, and the data index n. 

To generate a counter sequence where each value is 

equal to its index, the user need just provide "n" as 

the text rule. 

5) OUTPUT DATA 

When the data model is complete, the user may 

choose between many different export methods. 

data export, data model export, web service data 

streaming, and data export specification. 

Users may initiate the generation process to store 

data points into the le system after the data model is 

prepared to build the nal dataset. Another option is 

for the system to create data in real time through a 

Web Service, where it would be generated and 

supplied in response to requests made via URLs. 

The system may produce a JSON (JavaScript 

Object Notation) representation of the model if the 

user simply wishes to export the model and not the 

whole dataset. All of the model's generators, 

operators, and parameters are recorded in a 

compact hierarchical JSON le that can be imported 

into the system at a later time to restore the data 

model. 

It is also possible to export the data model using a 

DOT file. 

 

le, which can then be imported into GraphViz [27] 

to create a model diagram that is understandable to 

humans. 

User interface (B) 

The GUI's seven most notable features are shown 

in Figure 5 below. A menu bar, B tabs for currently 

open models, C a setup window, D a panel for 

configuring the generator and dimensions, D a 

preview of the data, and F a button to generate the 

model (G). 

In Figure 5 (A), we see the application's menu bar, 

which includes the options File > Edit > Data 

Model > Visualize > Help. 

New Model, New Dimension, Open Model, Save 

Model, Save Model As, and Import Dataset may all 

be found under the File menu. In the Edit menu, 

you may choose between Undo and Redo. Data 

samples from the current model may be seen in a 

number of different visualization formats, all of 

which are accessible through the Visualize menu: 

bar chart, histogram, scatterplot matrix, beeswarm 

plot, treemap, sunburst, parallel coordinates, and 

bundled parallel coordinates [28, 29]. You may 

rename, delete, or export your model from the 

Model menu. Toggle Web Service, Open Web 

Service, Toggle Web Service, and Copy Web 

Service URI are all examples of DOT Files. 

Tabs of open models are shown in Figure 5 (B). 

Every tab has its own setup panel (C) with data 

model specifications such dimension titles and 

types, generator chains, and useful buttons like lter, 
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add generator, remove generator, and delete 

dimension. The C button, located in the panel's 

lower right corner, allows users to give their 

models an extra dimension. It's also feasible to 

rearrange and reposition generators. Dimensions 

may be ltered out by the user, causing them to be 

removed from both the preview and the final 

dataset. When a user clicks on a generator, details 

about that generator, as well as the dimension (E) it 

belongs to, are presented (D). 

The operator and settings for the generator are set 

in the generator properties panel (D). The Data 

Preview panel (F) refreshes a parallel coordinates 

representation of the data samples after any 

modifications to the model, providing 

instantaneous visual feedback on data behavior. 

Selecting the blue "generate" (G) button in the 

lower-right corner of the window will launch a 

dialogue where you may specify the name, path, 

and length of your final dataset. 

When you click the settings cog, a box opens up 

where you may adjust the Parameter Iterator's 

settings, which in turn produce a series of datasets 

with variable parameters. 

Data samples from the model may be seen using 

the system's built-in visualization analysis tool 

(Menu > Visualize), in addition to the Preview 

Panel. This function is crucial because it allows the 

user to see in real time whether the data model is 

producing accurate results. 

Users may pick and select the visualizations they 

want to work with in the visualization window, 

which can be a separate window from the primary 

one. As can be seen in Figure 6, the visualization 

window has a flexible layout, enabling the user to 

expand each visualization by moving the dotted 

line and even divide an area to add additional ones. 

Data objects from multiple views may be more 

easily related because to the consistent use of color, 

filtering, and selection across representations. 

The user may also utilize several monitors to see 

many windows simultaneously. 

 

IV. USAGE SCENARIOS - GENERATING 

DATASETS FOR 

MACHINE LEARNING CLASSIFICATION 

As an example of how to construct a test dataset for 

machine learning with variance in certain data 

attributes, consider the following situation. 

Therefore, the proposed instrument will produce 

data sets. 

Adjusting the number of classes, the number of 

outliers, the distance between classes, the 

percentage of missing data, the distribution of 

undesirable features, and the number of classes [31, 

37]. 

Variations are specified on top of a standard dataset 

that contains the following features: 

One thousand entries 

0 exceptional cases 

There are no blanks in this data. 

One class and one important feature; no irrelevant 

characteristics are included. 

80% Distinction between socioeconomic groups 

Separate Tracks 

Absence of Economic Disparity 

Figure 7 depicts the procedure by which the system 

creates this predefined data collection. When 

mapping the class dimension (Dimension 1) to the 

feature dimension (Dimension 2), a Categorical 

Function acts as a decision point (Dimension 2). 

Parameters for the Uniform generator embedded in 

the Dimension 2 chains are class A1's Min D = 0 
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and Max D = 1:2, and class A2's Min D = 1 and 

Max D = 2. With these settings, there will be 

overlap of 20% in the feature dimension, resulting 

in only 80% class separation. 

Therefore, six distinct datasets were produced, one 

for each of the six attributes in the default dataset. 

Systematically, the system produced four datasets 

for each dataset type, each with a tiny variation in 

the target attribute. The system generated datasets, 

for instance, to adjust the impact of the total 

number of outliers. 

 

 

AMOUNT OF OUTLIERS 

The percentage of data points that are outliers is 

represented by the Amount of Outliers. Figure 8 

demonstrates how to utilize the Noise Generator to 

generate the extreme values. There was some 

conjuring involved in making the noise generator 

work to modify the initial value by adding a 

uniformly distributed Gaussian noise with a mean 

of zero and a standard deviation of one, multiplied 

by 20 (the "force parameter"). The noise frequency 

ranged from ten percent to forty percent. 

 

In Figure 9, we see examples of these created 

datasets with varied numbers of outliers. Most of 

the information is between 0 and 1.8, with a few 

outliers at each end of the scale. 

In Figure 8, found in the box labeled "Noise," we 

observe the relationship between the 'Prob' 

parameter and the number of outliers increasing 

from 10% to 40% graphically shown. 

CLASS SEPARATION 

The degree to which the distributions of two or 

more classes overlap is measured by the Class 

Separation feature. Parameters (Min and Max) of 

the Uniform Distribution Function are shown in 

Figure 10. 

Altering the parameters of the generators allows for 

the introduction of a crossover in the distributions 

produced. For instance, in order to establish social 

stratification 
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Distinction between the groups is seen in Figure 

11. 

The Histogram displays the total value for each 

category in the dataset, with a distinct break at the 

96th percentile (0:96). 

 

separation. From that point on, the intermixing of 

the various categories' distributions will rise. This 

data might be used to examine the hypothesis that 

as class overlap grows, so does classifier accuracy 

AMOUNT OF MISSING VALUES 

The percentage of blank cells in a dataset 

represents the number of missing values. This 

feature is generated via the MCAR (Missing 

Completely at Random) generator, as seen in 

Figure 12. 

Using the probability specified by the parameter 

"Prob," this generator takes the output of another 

generator (here, a Uniform generator) and replaces 

it with a missing value. 

 

Datasets with blank cells are shown in Figure 13. 

Dimension 2's red hue represents a 10% to 40% 

shift in values, and the red color itself maps the 

missing values. 

grows as the class stays the same, which is what we 

want to see when we test out various classication 

methods with missing data. To keep the visuals 

from becoming too busy, we reduced the red's 

opacity to 0.2. 

8th Annual Volume, 2020, 82925 

 

The created datasets might be used to assess a 

classifier's ability to cope with missing values in 

features. It's possible that other sources of missing 

values exist. 

Methodological frameworks, such as the MAR, that 

are provided (Missing at Random). 

The imputation techniques might be put to the test 

with this data as well. 

CLASS IMBALANCE 

Class Imbalance measures how evenly distributed 

the data is amongst the different categories. 

Because of the disparity in class, there are a 

number of hypotheses that might be explored using 

new methods in classication [38]. 

Using the percentage of occurrence in the dataset as 

its weight (or probability), the Weighted 

Categorical generator provides this feature (see 

Figure 14). 
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On beeswarm plots, as shown in Figure 15, there is 

an obvious gender and age disparity. 

When everything is in equilibrium, the two 

distributions have the same thickness on the plot, 

but as the imbalance begins, they begin to diverge. 

To evolve into something new. The thickness of A1 

is substantially lowered while the thickness of A2 

is increased in the end (20%-80%) 

BAD FEATURES 

The quantity of characteristics that have no 

connection to the class (i.e., are bad) is what is 

meant by the term "Bad Features." so that it might 

be included in the canon of classic literature. 

Adding dimensions using Uniform Generators is 

sufficient (see Figure 16) since the dimensions are 

not connected. 

The flaws of a Parallel Coordinates are shown in 

Figure 17. 

The excellent feature shows a striking visual 

difference, and 

 

Inconsistent and uninteresting designs are used to 

illustrate the poor quality of the features. A 

classifier's ability to distinguish between useful and 

non-useful characteristics might be evaluated using 

such data sets. 

 

AMOUNT OF CLASSES 

The quantity of classes is the total number of class 

dimensions. You can see how the Categorical 

Generator takes in a wide variety of categories in 

Figure 18. 

Beeswarm plot class counts are shown binned in 

Figure 19. Each group is represented by a different 

hue, and their relative placement is also indicated. 

Class plots become quite tiny beyond 22 classes, 

yet data distribution shows clear distinction 

between groups. These data sets might be used to 

see whether classifiers perform well under high-

volume classification. 
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classes, also test if the accuracy of classi_ers 

remains balanced between classes. 

V. CONCLUSION 

In this study, a synthetic data generator was 

introduced to test data visualization tools and 

machine learning algorithms. The program is very 

adaptable and provides the flexibility to build 

unique generation proles from a variety of 

distribution primitives, including but not limited to 

uniform and normal distributions. The included 

tools, functions, sequences, and geometric 

generators make it possible to create extremely 

individualized data sets. 

The ability to import and export the descriptive 

model le is a big boon to the repeatability of 

scientific studies. 

To facilitate integration of the system and the data 

it generates with other applications, the software 

provides a web service for receiving and processing 

data in a continuous stream. 

In addition, this article demonstrates how the 

program may be put to work in the context of 

testing various machine learning approaches. 

This demonstrated the feasibility of generating 

novel datasets, giving the user command over 

recurrent issues in machine learning projects. The 

built-in graphics for each case study demonstrate 

the tool's reliability in verifying circumstance that 

arises.  

The process of separating generators from actual 

data is a potential direction for future research. An 

idiom may be developed from the modeling 

language that defines the composition of a chain of 

generators, which can then be used to the study of 

the behavior of actual data. If this barrier could be 

overcome, it would be possible to construct 

synthetic data from genuine ones by altering the 

characteristics that drive their distributions. 

Machine learning methods may also be used to 

improve the realism of synthetic data generation by 

include noises that occur naturally in actual data 

without significantly altering the distribution 

underlying the data. 

In addition, the authors plan to incorporate: a 

constant seed to allow for the generation of a 

unique dataset, new visualizations for data 

validation, and new interaction possibilities, such 

as zoom in/out, lter, and re-ordering; more types of 

generators; and new ways to display generators to 

facilitate the understanding of the model's design. 

In addition, future work may include a visual or 

quantitative comparison component for verification 

or comparison. In addition, the system will make 

use of real-world data to model similar synthetic 

data, which the user may then compare to the 

original. 
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