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                Abstract 

From being a scientific curiosity only a few years ago, energy harvesting (EH) is well on its way to becoming a 

game-changing technology in the field of autonomous wireless networked systems. The promise of long-term, 

uninterrupted and self-sustainable operation in a diverse array of applications has captured the interest of academia and 

industry alike. Yet the road to the ultimate network of perpetual communicating devices is plagued with potholes: 

ambient energy is intermittent and scarce, energy storage capacity is limited, and devices are constrained in size and 

complexity. In dealing with these challenges, this article will cover recent developments in the design of intelligent 

energy management policies for EH wireless devices and discuss pressing research questions in this rapidly growing 

field. 

 
 

          INTRODUCTION 

EH wireless Devices (EHDs) are 

increasingly being deployed in 

practice, replacing their traditional, 

battery-operated counterparts, when 

inaccessibility or the sheer number of 

nodes often render battery replacement 

difficult and cost-prohibitive. Potential 

applications span the whole gamut of 

autonomous networked systems: from 

machine-to-machine and sensor 

networks, to building automation and 

monitor- ing in smart grids. It is no 

surprise that the global EH market is 

expanding at an unprecedented rate: it 

is expected to reach 1894.87 million 

dollars by 2017 at an estimated annual 

growth rate of approximately 24%
1
. A 

major factor that has contributed to 

this growth is the evolution of ultra-

low power electronics, 
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which can run on the minuscule 

amounts of energy supplied by typical 

solar, vibration or thermal energy 

harvesters, and a number of companies 

are already offering system solutions 

consisting exclusively of EHDs
2
. 

The ultimate promise of EH is a 

self-sustainable, maintenance-free 

network of perpetually communi- 

cating devices. With this promise 

comes a fundamental shift in design 

principles compared to traditional 

systems with battery operated nodes: 

whereas minimizing energy 

consumption is crucial to prolong 

network lifetime in the latter, in 

networks of EHDs the objective is the 

intelligent management of the 

harvested energy to ensure long-term, 

uninterrupted operation. The goal of 

this article is to provide an overview of 

recent developments in the design of 

energy management policies for EHDs. 

We focus on analytical models that 

capture the fundamental challenges 

related to the design of any EH system: 

the intermittent nature of harvested 

energy, the limited capacity and 

leakage of energy storage devices, and 

the constraints on device complexity. 

The article is concluded with a 

discussion on what the authors believe 

are the most important research 

challenges that lie ahead. 

 
A 
MATHEMATI

CAL MODEL 

FOR EHDS 

The block diagram of a typical EHD 

is shown in Fig. 1. The device consists 

of an EH module that converts ambient 

energy to electrical energy, which is 

stored in a storage element (SE), 

typically a rechargeable battery or a 

(super) capacitor. The SE powers the 

micro-processor (µP) and the sensing 

and radio apparatus. The sensor block 

performs the sensing functionality, i.e., 

collection and digitization of 

temperature, pressure, or motion data, 

depending on the application. The 

radio block is the portal of the device 

to the world, transmitting or receiving 

measurement and control data. 

The µP makes decisions about 

switching on/off the sensing, 

transmitting or receiving circuits, and 

stores sensed or received data in the 

data buffer. Since sensing, 

transmission and reception consume 

energy, the heart of an intelligent 

energy management system lies at the 

µP. For the purposes of analysis and 

design, it is useful to think of the 

EHD as consisting of an energy and a 

data buffer; as illustrated in Fig. 1, the 

µP controls the energy supply from the 

SE to the sensing apparatus and to the 

RF transceiver, thus, in turn, 

controlling the data input to (via 

sensing and reception) and from (via 

transmission) the data buffer. In 

performing these tasks, the µP also 

consumes energy. The energy and 

data arrival rates to the corresponding 

buffers are modeled by the processes 

H(t) and I(t), and the states of the 

energy and data buffers at time t are 

denoted by S(t) and D(t), 

respectively. Both buffers are of 

finite capacity; 
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Figure 1.   Block diagram of a typical EHD and its mathematical model. Solid and dash-dot lines indicate energy and data 

transfer, respectively. Energy is harvested at rate H(t) and stored in the buffer of capacity emax(t); input data (sensed or received) 

is generated at rate I(t) and stored in the buffer of capacity dmax. When sensing, transmitting or receiving, the EHD consumes 

energy; this is modeled by a set of switches, controlled by the µP, which, in the process, also consumes energy. 

 
 

 

dmax denotes the constant data buffer 

capacity, while emax(t) denotes the SE 

capacity, which is generally time-

varying, e.g., as in the case of 

electrochemical batteries, where the 

capacity is a decreasing function of the 

number of charge-discharge cycles. 

This mathematical model is a 

powerful abstraction, which captures 

the fundamental characteristics of an 

EHD. An energy management policy 

for an EHD consists of the set of rules 

that govern the decisions of the µP to 

activate the switches of Fig. 1 at any 

given time t, with the goal of 

optimizing a utility function. The 

solution to this problem depends 

heavily on the characteristics of H(t) 

and I(t), the degree of knowledge of 

the µP about these processes, as well 

as the physical constraints. 

Accordingly, in the following sections, 

we present two fundamental 

approaches: in the offline optimization 

framework, it is assumed that the 

exact values of H(t) and I(t) are 

known in advance at the µP for the 

whole duration 

 
 of operation. In contrast, in the online 

optimization framework, it is 

assumed that the µP knows the past 

realizations of H(t) and I(t), but has 

only statistical knowledge of their 

future evolution. 

 
OPERATION IN PREDICTABLE 

ENVIRONMENTS: OFFLINE 

OPTIMIZATION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

The offline optimization 

framework is well suited to 

applications in which H(t) and I(t) 

are known in advance or can be 

accurately predicted. For example, if 

the EH module is a solar panel, 

depending on the location, season, 

time of the day and device 

characteristics, H(t) can be 

accurately modeled, as shown, e.g., by 

the measurement campaigns in [1]. A 

sensor periodically taking 

measurements of fixed resolution is 

an example where I(t) is known in 

advance. 

We consider an EHD which transmits data to 

a receiver, and focus only on the energy 

consumed for 

data transmission. Let the rate-power 

function, r(P ), denote the information 

rate (in bits/s/Hz) achievable at a 

transmission power P by the particular 

transmission scheme used. We assume 

that r(P ) is a non- negative, 

monotonically increasing and strictly 

concave function. Most practical 

coding schemes, as well 

as Shannon’s capacity function 

 

 

satisfy these properties. 

1 

r(P ) =  

2 

                                                 log(1 + P ) (1) 

In the case of a battery-operated 

device, there is an initial amount of 

energy H in the SE, and no energy is 

harvested. Given a deadline T , it can 

be proven using Jensen’s inequality 

that transmitting at a constant power 

maximizes the total transmitted data 

by the deadline. In contrast, for an 

EHD, the EH profile typically varies 

over time; hence, a scheme that 

transmits at a constant power and 

consumes all the arriving energy by 

the deadline may not be feasible. This 

calls for the optimization of the 

transmission power based on the 

particular EH profile. 

 
Heavy data traffic scenario 

Let us first consider the case where the data 

buffer is backlogged, i.e., there is always data 

available 

for transmission, and focus only on the 

effect of EH profile on the optimal 

transmission power. A useful 

visualization tool  is  to  consider the  

cumulative  harvested energy curve, 

denoted by  H̄ (t),  which is  the total 

amount of harvested energy until 

time t, i.e., the integral of H(t) over 

time. The goal is to design a 

transmission policy P (t), which 

specifies the transmission power over 

the interval [0,T ], such that the 

total amount of transmitted data by the deadline 

is maximized. 



 

 

 

H 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.    The cumulative harvested energy curve, H̄ (t), a feasible transmitted energy curve, E(t), and the optimal transmitted 

energy curve, Eopt(t), for an EHD with decreasing energy storage capacity. 

 

 

 

 Similarly, we can also define a cumulative transmitted energy curve, E(t), as the integral of P (t) 

over time. Note that specifying a transmission policy is equivalent to specifying E(t), which is a non- 

decreasing, continuous function. A natural constraint follows from energy causality, which dictates that 

energy cannot be used before it is harvested. This is equivalent to having transmitted energy curve lie 

under the harvested energy curve at all times. Moreover, the optimal transmission policy should not waste 

any energy; hence, there should be no SE overflows [2], that is, the difference between the harvested 

energy curve  

 

 

 

 

 

 

 

 

 

 

 

 

 

¯ (T ) 

Eopt(t) 

H̄ (t) 

emax(t) 
E(t) 

H̄ (0) 

t1 t2 t3 T 



 

 

and the transmitted energy curve 

should never be larger than the SE 

capacity. Finally, all the harvested 

energy should be used by the deadline, 

that is, the transmitted energy curve 

should meet the harvested energy 

curve at time T . 

In Fig. 2, H̄ (t) and H̄ (t)− emax(t) are plotted 
as two dotted curves. Schematically, the 
aforementioned 

constraints imply that the optimal E(t) 

should start from the origin, lie 

between the two dotted curves, and 

terminate  at  point  (T, H̄ (T )).  The  

black  curve  illustrates  one  such  

feasible  curve.  However,  as  shown in 

[3], due to the concavity of r(P ), 

the optimal transmission policy 

should follow the shortest path 

between the start and end points. The 

optimal transmitted energy curve, 

Eopt(t), is shown in Fig. 2. In the case 

of discrete (packetized) energy 

arrivals, the optimal transmitted 

energy curve can be obtained 

 through a simple recursive algorithm [4]. 

 
 

General data traffic scenario 

We now consider the more general scenario in 

which data, as well as energy, arrive at the 

corresponding 

buffers over time. The goal may be 

to minimize the transmission time 

[4], or to maximize the energy 

remaining in the SE [5], while 

transmitting all the arriving data. Let 

Ī (t) and Ō (t) denote the total number 

of bits that have arrived and that have 

been transmitted by time t, 

respectively. By data causality, Ō (t) 

should lie under I¯(t) at all times. 

Accordingly, the optimal transmission 

policy derived for a backlogged 

system may not be feasible if there is 

not enough data in the data buffer. 

Additionally, if no data can be  

dropped,  Ō (t)  must  always  lie  above  

Ī (t) − dmax.  A  transmission  strategy  

has  both  a  transmitted 

energy curve and a corresponding transmitted 
data curve. The optimal transmission strategy 
must jointly 

account for the constraints in both the 

data and energy domains. For 

discrete energy and data arrivals, i.e., 

H̄ (t) and Ī (t) are increasing step 

functions, the optimal transmission 

policy can be obtained through a 

recursive algorithm that checks the 

conditions on transmitted data and 

energy curves jointly [4]. 

 
Data transmission over time-varying 

channels: Directional waterfilling 

So far in our treatment, we have 

considered a constant EHD-receiver 

channel. We now turn our attention to a 

time-varying channel with a 

backlogged transmitter, for which the 

rate-power function varies over time 

according to (1), with P replaced by 

φ(t)P (t), where φ(t) denotes the 

squared magnitude of the 

channel gain. Moreover, we assume that the 
changes in φ(t) and H̄ (t) occur only at certain 
time instants 

0  = t0 < t1 < t2 < · · ·  < tN = T . We denote 
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the channel state in epoch [ti−1, ti),  i = 1 , . . .  

,N , as 

φi. Assuming that, in addition to 

harvested energy amounts, channel 

states are also known in advance, the 

problem is that of determining P (t) 

such that the total amount of 

transmitted data by time T is 

maximized. 

We first consider a battery-operated 

device with total energy 2H. The 

problem reduces to the well studied 

problem of power allocation over 

parallel Gaussian channels. Let us 

consider a simple scenario consisting 

of only two epochs of equal length, 

with φ1 > φ2. The optimal power 

allocation is given by the celebrated 

waterfilling algorithm, and is 

illustrated in Fig. 3(a), where the 

shaded areas represent the energy 

allocated to each epoch, and the height 

of the shaded region, Pi, is the constant 

transmission power for that epoch. 

We can see that more power is 

allocated to the better channel state. 

For a general EH profile, direct 

application of the waterfilling 

algorithm may not be feasible. For 

example, assume that H units of 

energy are harvested at times 0 and T 

/2, respectively. The waterfilling 
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Figure 3. Power allocation over time-varying channel with φ1 > φ2. (a) 2H units harvested at time 0, (b) H units harvested 

at times 0 and T /2. 

 
 

 

algorithm allocates more than half of 

the total energy to the first epoch. 

However, due to the energy causality 

constraint, we can allocate at most H 

units of energy to the first epoch, and 

hence, the waterfilling solution in Fig. 

3(a) is no longer feasible. The 

optimal allocation under energy 

causality, illustrated in Fig. 3(b), is 

called directional waterfilling [6]. 

The algorithm owes its name to the 

fact that harvested energy can only 

be allocated to the epochs following 

its arrival. 
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The finite SE capacity should also 

be taken into account when applying 

the directional waterfilling algorithm. 

This can be seen by swapping the 

channel states of the two epochs, i.e., 

φ2 > φ1. As shown in Fig. 4(a), the 

directional and classical waterfilling 

algorithms achieve the same solution 

since the energy harvested at time t = 0 

can be allocated to the second epoch. 

However, the energy carried to the 

second epoch from the first epoch 

together with the harvested energy at 

time t = T should be stored in the SE. 

We can allocate at most emax energy 

units to the second epoch. For 

example, if emax = H, no additional 

power can be allocated to the second 

epoch, and the optimal solution 

allocates H energy units to each 

epoch, as shown in Fig. 4(b). 

The optimal directional waterfilling 

algorithm needs to satisfy both the 

energy causality and the SE capacity 

constraints, and it can be obtained 

through a recursive algorithm which 

starts from the last energy packet and 

goes backwards [5]. 
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Figure 4. Power allocation over time-varying channel with φ1 < φ2 and H units harvested at time 0 and T . (a) No SE capacity 

constraint, (b) SE capacity emax = H. 

 

 

Processing energy cost: Directional glue-pouring 

In a long-distance communication 

link radio transmission dominates the 

energy consumption at the EHD; 

hence, the framework presented so far 

results in optimal energy management 

policies. However, in short-range 

communications, other sources of 

energy consumption, such as 

converters, mixers, filters, become 

more significant and need to be 

included in the analysis. When the 

processing energy cost is negligible, 

the transmitter remains active until the 

deadline, since low power transmission 

is more efficient in terms of bits per 

unit energy. However, when the 

processing energy cost is comparable 

to the transmission energy, increasing 



 

the transmission duration results in a 

tradeoff between the total amount of 

transmitted data and the energy spent 

by the processing circuitry. The 

optimal transmission scheme is bursty, 

separated by “sleep” periods, during 

which the transmitter remains silent. 

The optimal power allocation can be 

found as the solution of a convex 

optimization problem, and interpreted 

as a backward directional glue-

pouring algorithm [5], in which a 

minimum power level is set for each 

epoch depending on the channel state 

and the processing cost, and energy is 

“poured” into an epoch at this power 

level with increasing duration. The 

power allocated to an epoch increases 

beyond this level only after the whole 

epoch is covered. 

 

OPERATION IN  UNPREDICTABLE 

ENVIRONMENTS: ONLINE 

OPTIMIZATION 

In the previous section, non-causal 

knowledge of the energy and data 

arrival processes allowed solving for 

the optimal policy through a one-shot 

optimization problem. However, in 

many practical scenarios, 



 

 these processes are not known in 

advance. In this case, the µP must 

make intelligent decisions in an online 

fashion based on possibly available 

statistical information on H(t) and 

I(t), and (possibly incomplete) 

knowledge of the system state, which 

includes current values of S(t) and 

D(t) and past values of H(t) and I(t). 

An approach that has been adopted is 

to come up with heuristic online 

algorithms and compare their 

performance with the offline 

benchmark [5], [6]. Alternatively, 

determining the optimal policy can be 

formally stated as a stochastic control 

problem, with the objective to 

determine the optimal decision rules 

such that the expected outcome of 

the decisions is maximized. 

 
A framework for solving online problems: 

Markov decision processes 

If H(t) and I(t) are modeled as 

Markov processes, the online 

problem can be cast under the 

powerful framework of Markov 

decision processes (MDPs). At each 

time, the µP decides on an action 

given the system state; the action 

yields a reward and the system 

moves to a new state with a given 

probability, which depends on the 

current state and action. The optimal 

policy is a set of decision rules that 

maximizes the expected reward over a 

time-horizon. In the context of EHDs, 

the reward function may be the priority 

[7], importance [8] or amount [6], [9] 

of transmitted data, or the detection 

of an interesting event [10]. The 

fundamental tradeoff pertinent to 

EHDs is related to the energy cost of 

transmission or sensing. On the one 

hand, if a policy is too “generous”, i.e., 

it activates the radio or sensor too 

often, it risks emptying the SE, thus 

rendering the EHD potentially unable 

to transmit important data or detect 

an interesting event. On the other 

hand, if it is too frugal, i.e., it rarely 

transmits or senses, it “accrues” little 

reward; moreover, the SE may 

overflow, and newly harvested 

energy is wasted. 

The policy that strikes the best 

tradeoff can be found numerically with 

standard dynamic programming tools 

such as the policy iteration algorithm 

(PIA), as, e.g., in [6], [7], and can 

then be programmed into the µP. The 

problems with this approach are the 

implementation complexity, which 

grows with the size of the state space, 

as well as the lack of analytical insight. 

This motivates the search for simpler 

policies which seek to balance energy 

consumption and harvesting, with 

limited state information at their 

disposal, and whose performance can 

be evaluated and optimized 

analytically. The advantages of this 

approach are illustrated in the 



 

following representative scenario. 

 
Low-complexity transmission policies for 
time-correlated EH 

Consider a time-slotted system, such 

that, every time unit (slot), a new data 

packet of a given importance enters the 

data buffer of Fig. 1, and must either 

be immediately transmitted at a cost 

of one energy unit or dropped. The 

importance of the data packet at time 

i, i ∈ Z, is denoted by V (i), and we 

assume that 

 {V (i)} are independent and identically 

distributed according to a given 

distribution function which is known 

at the µP. In addition, in each slot, 

some amount of energy is harvested 

and stored in the SE of capacity emax, 

according to a two-state Markov 

chain: in the GOOD state, one energy 

unit is harvested, whereas, in the BAD 

state, no energy is harvested. The 

transitions from GOOD to BAD, and 

vice versa, occur with given 

probabilities, such that the average 

durations of the GOOD and BAD 

periods are TG and TB, respectively, 

and the probability of harvesting an 

energy unit in a slot is β = TG/(TG + 

TB). The model is simple, yet it 

allows us to introduce time 

correlation in the energy source, the 

degree of which depends on the 

values of TG and TB.
3
 

At each time i, the µP must decide 

whether to transmit the current packet 

to the receiver or to drop it, with the 

objective to maximize the average 

importance of transmitted data in the 

long-term. The decision depends on 

the system state, i.e., the importance 

of the arriving packet, V (i), the 

energy available in 

the SE, S(i), and the amount of energy 

harvested in time slot [i − 1, i), H(i) ∈ {0, 1}. It 

can be shown 

that the optimal policy has a threshold 

structure, i.e., the packet is transmitted 

if V (i) is greater than a given value 

vth, which depends on both S(i) and 

H(i) [7], [8], and the optimal 

thresholds can be found numerically 

with the PIA. However, a simpler 

policy is the non-adaptive balanced 

policy (NABP) that employs only one 

threshold vth such that the probability 

of transmission is always equal to the 

probability that an energy unit is 

harvested in a slot, β. Denote by g(β) 

the average importance of data with 

value greater than vth. It can be shown 

that, for large values of emax and TB, 

the average long-term importance 



 

per time unit is 
 G = g(β) 

 β + (1 − β) 

 " 
ρ 
 

 

ρ + β 

  

(2) where ρ = emax/TB is the power-to-depletion, i.e., the 

maximum power that, on average, can be continuously 

supplied by a fully charged SE over a BAD period (in 

which no harvesting occurs). 

Essentially, ρ reflects the ability of 

the SE to absorb the fluctuations in 

the ambient energy supply. If ρ is 

much greater than β, the SE can (with 

high probability) support a constant 

energy consumption rate β, without 

emptying in the BAD periods or 

overflowing in the GOOD periods, 

and, from (2), G ≈ g(β), which is the 

best achievable reward by any policy 

[8]. In contrast, if ρ is much smaller 

than 

β, adaptation to H(t) is critical to achieve good 
performance. Intuitively, a “smarter” balanced 
policy 

should be generous in the GOOD 

state by transmitting with a high 

probability ηG, and conservative in the 

BAD state by transmitting with a 

lower probability ηB < ηG. The 

optimal probabilities ηG and ηB can be 

analytically derived to determine the 

optimal balanced policy (OBP) [8]. 

  
3A more general approach can be found in [8].  
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Figure 5.   Average transmitted data importance G vs. power-to-depletion ρ (β = 0.5, FV (v)= 1 − e−v). 

 

 
In Fig. 5, G is plotted vs. ρ for 

exponentially distributed importance 

values, under the following 

transmission policies: the optimal 

policy (OP), computed numerically 

with the PIA, the OBP, the NABP, and 
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the greedy policy (GP), which always 

transmits when there is energy in the 

buffer. Fig 5 reveals that the 

performance loss of OBP with respect 

to OP is less than 5% for the selected 

parameters. NABP performs poorly for 

small ρ, but approaches the optimal 

performance for growing ρ, since 

adaptation becomes less crucial. 

Finally, the penalty paid by using GP 

increases with ρ, which illustrates the 

importance of maintaining a steady 

energy consumption rate, instead of 

constantly emptying the buffer by 

indiscriminate data transmission. 

 
Transmission policies for bursty data 

The previous scenario assumed the 

arrival of a new data packet in each 

slot and a strict delay constraint for its 

delivery (transmit or drop). However, 

in a number of applications, data may 

arrive randomly in bursts, and may be 

buffered in the data buffer before 

being transmitted. Minimizing the 

mean delay of the buffered data, or, 

equivalently, E[D(t)], is generally a 

complicated problem, owing to the 

combined randomness in I(t) and 

H(t). In [9], various heuristic delay-

minimizing policies are proposed for 

both constant and time-varying 

channels. The main idea behind these 

policies is to adjust the transmission 



 

 

power based on the amount of data 

D(t) in the buffer at any given time t, 

in order to avoid wasting harvested 

energy when there is not enough data 

in the buffer. Similar concepts are also 

explored in [11], where a certain drift-

based policy is shown to be 

asymptotically throughput-optimal as 

emax and dmax become very large. 

 
Sensing policies for time-correlated events 

The previous two scenarios dealt 

with the energy management problem 

if data transmission is the only cause of 

energy expenditure. Instead, in [10] the 

MDP framework is employed to 

address the problem of optimal 

sensing. In particular, under a given 

energy cost of activating the sensor and 

taking a measurement, the objective is 

to find a policy that maximizes the 

long-term probability of detecting an 

event whose occurence (0 or 1) 

follows a two-state Markov chain. 

Here, the tradeoff that arises is that 

the µP may save energy by switching 

off the sensing circuitry if it anticipates 

that the event will not occur, at the risk 

of not reporting it in case it does. It 

is shown that, under an infinite emax 

and perfect knowledge about 

the event occurence in slot [i − 1, i), the optimal 

action at time i is to always sense if the event 

occurred 

in [i − 1, i) and there is adequate energy in the 

SE, and to sense with a certain probability 

which is a 

function of the statistics of H(i) and 

V (i), if the event did not occur. In 

the case where the µP does not have 

knowledge of the event occurence 

when the sensor is switched off, [10] 

also derives properties of the optimal 

policy using the framework of 

partially-observable MDPs. 

 

THE WAY 

FORWARD: 
RESEARCH 

CHALLENGES 

Under the prism of the approaches 

presented so far, we now discuss what 

we believe are the main challenges that 

lie ahead for the design of 

autonomous and reliable EH 

communication systems. 

 
Learning-theoretic algorithms for EH 
systems 

The assumption of non-causal 

information about the EH and data 

arrival profiles in the offline optimiza- 

tion framework is too optimistic in 

practice, unless the underlying 

processes are deterministic or highly 

predictable. This assumption is relaxed 

in the online optimization framework, 

in which the µP possesses only 

statistical information about the future 

evolution of these processes. 

Nonetheless, in many practical 

scenarios, statistical characteristics 

may change over time, or such 

information may not be available 

before deployment. In this case, neither 

the online nor the offline optimization 

framework will be applicable. An 

alternative solution is to employ 



 
learning theoretic algorithms to learn 

the characteristics of the EH and data 

arrival processes in real time, and to 

adapt the transmission policy 

accordingly. In [12], Q-learning, 

 a reinforcement learning technique, 

is considered for learning the optimal 

transmission strategy when the EH, 

data arrival and channel states are 

modeled as Markov processes with 

unknown state transition probabilities. 

It is shown that the online optimization 

performance can be achieved after a 

reasonable learning period. The 

exploration of other learning 

algorithms as well as of reduced 

complexity suboptimal techniques 

constitutes an interesting research 

direction. 

 
Networks of EHDs and energy 

cooperation 

As in conventional battery-operated 

systems, a network of EHDs is much 

harder to study than a single link. 

Some basic multi-user scenarios (such 

as broadcast [3], relay [13], multiple 

access and interference 

[14] channels) have been studied in the 

literature. In general, the complexity in 

characterizing the optimal policies 

increases significantly with the number 

of nodes in the network. Even in a 

simple two-hop scenario, the 

transmission schedule of the source 

node affects the data arrivals at the 

relay node, coupling the optimal 

transmission schemes across the 

network [13]. Moreover, optimal 

policies depend heavily on the 

available knowledge of the EH 

profiles across different devices. This 

information may be hard to obtain or 

even unattainable in practical systems, 

therefore solutions based only on local 

information should be sought, such as 

in [15], [16]. In [15], a routing 

algorithm is proposed which is shown 

to achieve an asymptotically optimal 

competitive ratio with respect to any 

offline scheme, as the number of 

nodes in the network grows large, 

while [16] derives an optimal random 

access policy based on a game-

theoretic formulation of the multiple 

access problem. 

A fascinating aspect of networks of 

EHDs arises when the devices can 

share/transfer energy, e.g., 

electromagnetic energy, among each 

other, as proposed in [17]. In 

particular, if the receiver can harvest 

electromagnetic energy, it is possible 

to wirelessly transmit data and energy 

simultaneously over the same carrier 

signal, which leads to many open 

research problems regarding resource 

allocation and interference 

management. 

 
Accurate modeling of EH processes and 

SE imperfections 

The proposed mathematical models 

render the performance analysis of 

EHDs tractable; however, they may 

not always be accurate in practice. It is 



 
thus desirable to enhance them based 

on real-world data, while, at the same 

time, maintaining their simplicity and 

analytical tractability. Towards this 

goal, measurement campaigns, such as 

the one in [1], are required, so that 

statistical models for the harvested 

energy are identified based on the 

application. Moreover, realistic storage 

and power consumption models, based 

as much as possible on actual EH 

modules, SEs and µP circuits, should 

be developed, and employed 

 in the design of energy management 

algorithms. As a first step in this 

direction, in [18], a statistical 

framework is developed, which models 

the state of health of the SE and 

captures the impact of the SE 

degradation on the optimal energy 

management policy. It is shown that a 

“degradation aware” energy 

management policy significantly 

improves the SE lifetime, while 

guaranteeing a minimum required 

quality of service. A similar 

observation is made in [3] for the 

offline optimization problem 

considering energy leakage as well as 

degrading SE capacity. 

 
CONCLUDIN

G REMARKS 

This article has provided an 

overview of the main mathematical 

tools and approaches in the design of 

EH communication systems. We have 

placed special emphasis on analytical 

models, whose study sheds light on the 

fundamental tradeoffs involved in the 

design of energy management policies 

for EHDs. At the moment, there 

appears to be a divide between 

communications and electronics 

engineers involved in EH research; the 

authors believe that many exciting 

research opportunities exist at the 

intersection of the two fields. We 

expect that the increasing deployment 

of EHDs in practice will bring about 

more cross- disciplinary research, and 

thus the development of smarter and 

more reliable EH wireless 

communication systems. 
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