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abstract 
Direct side-by-side comparison of the Sandia flames is used to examine Conditional Moment Closure (CMC) and Conditional Source -term Estimation (CSE). The 

purpose of this research is to compare the efficacy of various modeling approaches under similar situa tions and computational frameworks. We evaluate the 

accuracy of CMC and CSE predictions against extensive experimental data. In the instance of Sandia flame D, the turbulent flo w and mixing fields predicted by 

CMC and CSE are identical close to the nozzle exit, in accordance with the actual observations, but they diverge farther downstream. Good agreement exists 

between the experimental results obtained downstream of the nozzle for lean mixtures and the conditional mass fractions calcu lated using CMC and CSE for the 

principal species. There are several axial sites for fuel-rich mixes where the conditional mass proportion of methane is underestimated while the conditional 

mass fraction of water is overestimated. The main features of the experimental profiles are recapitulated by the CMC and CSE conditional mass fractions of the 

minor species and conditional temperature. However, Sandia flame E is drastically different. It has been determined that RANS , along with boundary conditions 

established in CMC and certain assumptions made in the chemical tables in CSE, are to blame for the observed differences. Both CMC and CSE Favre -averaged 

profiles are similar. Time spent running each model in the computer is compared, with CSE coming out on top. Further, some of  the benefits and drawbacks of 

each combustion model are discussed. Results are proven to be of equivalent quality between CMC and CSE when the same numeric al techniques, mesh, and 

boundary conditions are used.. 
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Introduction 

Closure for the mean chemical source term using conditional 
averaged quantities is provided by Conditional Moment Closure 
(CMC) [1,2] and Conditional Source-term Estimation (CSE) [3,4]. 
The underlying assumption of these models is that changes in 
species mass fractions and temperature (or enthalpy) may be 
linked to changes in one or more scalars that can be used as 
conditioning variables. In most standard formulations, only one 
conditioning variable is taken into account, such as the mixture 
fraction in non-premixed com-bustion. The thin flame assumption 
is unnecessary in the CMC or CSE derivation, expanding its 
application. The conditional response rates are closed to first order 
in flames that are distant from extinction or igniting [4], since the 
fluctuations around the conditional averages are minor and can be 
ignored. In this way, specificthe incorporation of chemistry can be 
done at little computational cost. As an added bonus, the 
conditional averages exhibit substantially less spatial variability 
than their unconditional counterparts. Because of this, conditional 
averages may be computed using a spatial mesh that is coarser 
than the grid used to solve unconditional averages. 

The concepts underpinning CSE and CMC are similar, but the 
methods used to calculate the conditional values are somewhat 
different. The conditional averages in CMC are calculated by 
resolving transport equations. The species and 
temperature/enthalpy controlling equations are conditionally 

averaged on a sample space variable to get the transport 
equations. The resulting physical space and sample space transport 
equations are then solved. Some unclosed terms, such the 
conditional velocity and the conditional scalar dissipation rate, 
need to be modeled, as will be detailed in Section 2.1. CMC 
methods have been continuously developed by a number of 
research groups over the past two decades, and they have shown 
promising results in modeling a wide variety of turbulent 
combustion problems employing a variety of fuels in Reynolds 
Averaged Navier-Stokes (RANS) calculations, such as jet and bluff-
body flames [5-7], soot in jet flames [8], autogyration [9,10], hood 
fires [11,12], spray autoignition [13], and soo In [20], the several 
uses of CMC are reviewed in detail. However, the closure of the 
conditional scalar dissipation rate of the progress variable and the 
extra complexity of a non-conserved conditioning variable provide 
challenges for CMC implementation for turbulent premixed 
combustion [21]. There is room for development here. Similarly, 
advancements in CMC based on two conditioning variables for 
turbulent partially-premixed combustion or situations with 
significant extinction or ignition have been restricted [22,23]. To 
the best of the authors' knowledge, there are no known examples 
of completely connected, doubly conditioned CMC formulations. 
Doubly conditioned CMC is more difficult than single conditioned 
CMC because of the presence of two sets of unclosed words. 
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CSE advancements, on the other hand, are more recent, build on 
CMC's capabilities while avoiding the closure of the extra terms 
included in the CMC transport equations. The conditional averages 
may be derived by inverting an integral equation, as shown in the 
first CSE article [3], which uses DNS data for an a priori test. While 
flamelet decomposition was used in the first iterations of integral 
inversion [24,25], a regularization approach with tabular precise 
chemistry is now used. Similar to CMC, CSE was first implemented 
for non-premixed instances and is continually evolving [24,25,27-
31]. Recent years have seen advancements in our understanding of 
premixed combustion [26,32,33], multi-stream configurations 
[34,35], and partially-premixed flames [36-38]. In the latter two 
cases, CSE closes the mean reaction rates without the need for 
closure of extra and difficult terms by using the utilization of 
doubly conditionally averaged quantities. Key CSE elements for 
high performance are precise inversion using a regularization 
approach [39] and a chemistry table that is realistic of the fuel and 
the task at hand [30]. 

As can be seen, CMC and CSE have certain things in common, and 
each has advantages and disadvantages that may become apparent 
depending on the context. Both methods have progressed to the 
point where they can be compared side by side for the same 
turbulent flame inside the same Computational Fluids Dynamics 
(CFD) framework, and evaluated for their forecast accuracy, 
computational time, and potential. 

The purpose of this analysis is to compare and contrast the various 
modeling approaches under identical settings and computational 
frameworks. We employ the same CFD numerical techniques, 
mesh, and boundary conditions for both sets of simulations to 
reduce inconsistencies. In order to provide a fair comparison 
between CMC and CSE, only RANS simulations are taken into 
account. 

Since the two models are founded on the same fundamental idea, 
it is crucial to identify and address the factors contributing to the 
differences in their forecasts. Both conditional mass balance and 
conditional species equilibria (CMC and CSE) rely on the direct 
retrieval of the conditional mass fractions of species through the 
solution of transport equations or inte- gral inversion, respectively. 
Numerical approximations and inaccuracies are introduced during 
the integral inversion procedure. No direct comparison with CMC 
has yet been done to evaluate the magnitude of this inaccuracy. 
Because of this, it is essential to evaluate whether or not the 
conditional profiles acquired by CSE through this inversion 
procedure are equivalent to those derived using the transport 
equations in CMC. The study presented here is the first to compare 
and contrast the two models head-to-head. In order to do this, we 
need well-characterized examples of turbulent flames that have 
not been premixed. Detailed experimental data on the mean axial 
velocities, temperatures, Favre-averaged mass fractions, mean 
mixture fractions, and mixture fraction root mean squares suggest 
that the Sandia piloted jet flames are a promising contender. 

(rms), and some conditional species concentrations at different 

lo-cations[40]. 

Many tur- bulent combustion models in RANS and LES have been 
used to successfully simulate the Sandia flames. These models 
include a Lagrangianflamelet model [41], a steady flamelet 
formulation [42], a flamelet model including a progress variable 
[43], and various Probability Density Function (PDF) approaches 
[44-50]. As an additional point of reference, the Sandia flames have 
been used in a number of CMC and CSE research. Good agreement 
is found for the conditional mass fractions of the principal species 
and temperature for lean mixtures in RANS when using radially-
averaged first order CMC incorporating radiation [7]. Inaccuracies 
in the chemical kinetics and non-negligible conditional fluctuations 
in fuel-rich areas explain the discrepancies reported between 
predictions and experimental evidence for fuel-rich mixes. 
Kronenburg and Kostka [23] provide a pretabulated dual 
conditioning approach that takes into account the impact of 
conditional fluctuations on conditional response rates. Since the 
primary species in the Sandia flame D do not significantly shift, the 
disagreement between our study and the findings previously 
reported by Room- ina and Bilger [7] must arise from differences in 
chemical kinetics in the fuel-rich zone. While Brizuela and Roudsari 
[51] do compare their results to experimental data in conditional 
space, they do do so in a restricted way. Predictions of species 
mass fractions are demonstrated to be enhanced by using second 
order CMC [52] and a second order La- grangian CMC approach 
[53]. When utilizing second order CMC, however, we do not see 
any increase in extinction. Better spatial and temporal resolu- tion 
of turbulent mixing in LES is demonstrated to allow for first order 
CMC to offer additional improvement compared to previous RANS 
predictions [54]. The LES-CMC grid sensitivity study [55] confirms 
this as well. Two different formulations have been used to simulate 
the Sandia flame D in the context of CSE. First using CSE in LES with 
a two-step chemical mechanism, Steiner and Bushe [56] found that 
their predictions were generally in line with the available 
experimental data. Later, a more refined CSE formulation is 
investigated, complete with tabu- lated chemistry; the resulting 
temperature and species concentration values are shown to be in 
excellent agreement with the experimental results [28]. No 
published CSE findings on the Sandia E and F flames have been 
found, as far as the authors are aware. 
The current study's implementations of CMC and CSE are detailed 
below. The major goal is to directly contrast the predictions made 
by the various formulations. Furthermore, experimental data are 
provided as a reference point against which the two simulations 
may be evaluated. 
 

.  
Previous CSE research has relied on existing knowledge about the 
flame to guide the selection of CSE ensembles. It is typical practice 
in premixed CSE to pick a single ensemble that accounts for the 
whole domain [26,32]. To take advantage of the modest radial 
dependency of the conditional averages [4] in non-premixed CSE, 
the ensembles are often chosen to be planes in the axial direction 
[27,28]. Two-mixture fraction CSE formulations [34,35] and partly 
premixed CSE [36] have also benefited from this strategy. 
It is possible to discretize Eq. (7) and express it as a matrix:
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where N is the scalar dissipation rate under all conditions. Using the PDF as 
an approximation, we may get the PDF of the mixture fraction [59]. According 
to the gradient diffusion hypothesis, the turbulence fluxes are modeled by 
the equations (urrYrr |) = DtQk and (urrTrr |) = Dt QT. The mixed fraction 
conditional probability density function (bin). The difficulty in finding a 
solution to Eq. (8) stems from the fact that it is ill-posed and sensitive to even 
minor changes in the system [60]. A regularization strategy is necessary to 
address this issue. right now 
The first order closure is used to simulate the chemical source term. 
 
Estimation of the Source Term Under Conditions 1.1 (CSE) 
 

1.1.1. Principle 
As with CMC, CSE was first suggested by Bushe and Steiner [3]. The 
conditional 
 
 

approach since it has been shown effective in prior CSE 
investigations [27,32,35]. Although further regularization 
techniques exist (see [39]), they are not taken into account 
here. When used as a regularization method, zeroth-order 

Tikhonov yields the following enhanced matrix,¨ →¨  

 

 

 

Fig.1. CSEcodestructure. 

 

where||.||2denotestheL2-normofavector,α→0
thesolutionfrom 

theprevioustimestep,andλ 
theregularizationparameter.InapreviousCSEstudy[36],itwasfoundt

hattheinitialchoiceofα→0
didnotimpactthefinalsolutionaslongasthein

itialchoicewaschosen such that the simulation produced a stable 

flame. The reg-ularizationparameterλisdeterminedby 

 
 

nal CMC predictions [15]. The same implementation is kept in 

thecurrent RANS calculations. The CSDR is calculated directly 

on theCMC mesh using Eq. (5). In CMC, the unconditional 

values are re-trivedbysolvingEq.(7). 

InbothCMCandCSE,transportequationsformeanmixturefractionξ
˜andvarianceξ̃ rr2aresolved.Closurefortheturbulent 

Schmidtnumberwhichissetto0.7. 

ferentvaluesofη.FurtherdetailsontheTGLDMmethodfornon- 

premixedcombustioncanbefoundin[27]. 

 
1.1. SummaryofequationssolvedinCMCandCSE 

 
The combustion models CSE and CMC are available in 
OpenFOAM 2.3 CFD code [62]. When comparing CMC with CSE 
simulations, you'll find no differences in the boundary 
conditions, turbulence model, numerical scheme, mesh, or 
chemical process. In Section 4 we offer further details on the 
turbulence model, boundary conditions, mesh, and chemical 
process used in the numerical scheme. Since the formulation of 
the combustion model accounts for all differences in the 
predictions, this research provides a rare chance to directly 
compare the two models. Figures 1 and 2 show a schematic of 
the CMC and CSE programs' integration with the CFD solver. 

The RANS-CMC technique used in this investigation calls for two 
different computational meshes, one for the RANS and one for 
the CMC. Given that conditional means exhibit far more variation 
across longer time periods than unconditional means, this is 
understandable. It is necessary to convert the information about 

the flow and mixing field from the coarser RANS-CFD resolution to 
the finer CMC resolution. By averaging over a large volume of 
data, we can calculate the conditional velocity, turbulent 
diffusivity, and unconditional scalar dissipation rate [63]. Previous 
LES-CMC implementations have discovered that mass weighted 
and PDF weighted averages are both appropriate, with only minor 
changes in the fi- 

Experimental conditions 

 
Since extensive experimental data is available, the methane/air 

non-premixed piloted Sandia flames examined by Barlow and Frank 

[40] are chosen for this investigation. A 7.2 mm primary fuel jet 

and an 18.2 mm pilot are at the heart of the Sandia flames, which 

are located in a wind tunnel with a 0.9 m/s coflow of air. With a 

stoichiometric mixture fraction of 0.351, the primary fuel jet 

consists of 25% methane (CH4) and 75% air by volume. At an 

equivalency ratio of 0.77, the pilot is a lean combination of ethyne 

(C2 H2), hydrogen (H2), air, carbon dioxide (CO2), and ni- trogen 

(N2). The primary jet of the Sandia flame D has a bulk velocity of 

49.6 m/s ( 2 m/s), which corresponds to a Reynolds number of 

22,400; the pilot's velocity is 11.4 m/s ( 0.5 m/s), which is the 

subject of the current investigation. An even more impressive 

quantity of local extinctions have been attributed to the Sandia 

flame E, which has a Reynolds number of 33,600. 

 

investigation, as well. 

Measurements of mass fraction of species, mixture fraction, 

temperature, and velocity at different axial positions have been 

obtained experimentally. Additional profiles of the mass fractions 

of species under various conditions are also accessible. Raman-

Rayleigh-LIF measurements were used to get temperature, species, 

and mixture fraction information from experiments. Nitrogen (N2), 

water vapor (H2O), carbon dioxide (CO2), hydrogen (H2), carbon 

monoxide (CO), and hydroxide (OH) all have experimental 

uncertainties (OH)  

α→=argmin 

, (9) 
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2. Computationaldetails 

 

OpenFoam 2.3 [62] is a finite volume programme that uses 

the CSE and CMC models under the low Ma number 

assumption. Standard OpenFoam release com- bustion 

solvers use a PIMPLE pressure correction technique to solve 

the velocity field. In simulation, the time step may be 

changed. You may expect a maximum Courant number of 0.3. 

CSE uses an integral inversion to calculate conditional 

averages, while CMC uses the solution of transport equations. 

Therefore, CMC and CSE need separate numerical methods. 

In order to solve problems involving finite differences, the 

CMC code [15,63] was developed. First and second order 

accurate total variation diminishing (TVD) schemes [64] are 

used to discretize the convective transport in Eqs. (1) and (2). 

Mixture fraction and physical space diffusion terms are 

discretized using a second-order accurate central difference 

technique. When the size of the system that needs to be 

solved concurrently is reduced, the computational burden is 

also reduced, and this is achieved via the use of full operator 

splitting. The system of ODEs for both the stiff and non-stiff 

portion of Eqs. (1) and (2) have been integrated using the 

solver VODPK [65]. (2). Adding transport equations for 

mixture percent and its variance, the present CSE algorithm is 

an expansion of the reactingFOAM combustion model. Both 

CMC and CSE use OpenFOAM's in-built numerical techniques 

to discretize these transport equations. As part of the 

inversion procedure, LU decomposition is used to get the 

solution to Equation (9). 

In the current investigation, the computational domain is a 

small-angle wedge ( =5) with a radius of 21D and a height of 

100D, where D is the fuel intake diameter equal to 7.2 mm. A 

two-dimensional object is constructed from a single cell in the 

direction of the arrow. 

 

simulation. The nozzle areas are represented by a non-

uniform grid in which the cell density is greater. The present 

mesh, consisting of 51,000 cells, has been proved to yield grid 

independent results after a succession of ever finer meshes 

were examined. 

For the turbulent flow field, this study makes use of the k 

model [66]. The C1 constant is adjusted, as is customary in 

the k model, such that it agrees with the velocity estimates 

from experiments. Using a sensitivity analysis, we found that 

C1 = 1.52 provides the greatest fit to the data from the 

experiments. CMC and CSE simulations of methane/air 

combustion with 19 species and 84 reactions are 

accompanied by detailed kinetics utilizing the DRM19 

mechanism [67]. Boundary conditions for velocities, 

temperatures, mixture fractions, turbulent kinetic energies, 

andBoth the kinetic energy k and the dissipation rate of k are 

chosen to correspond with the range of obtainable experimental 

circumstances. For the pilot flow, the species mass fraction of 

CO2 and H2O are both adjusted to their equilibrium 

compositional values of 0.109 and 0.10006 at the boundary 

conditions, respectively [51]. 

Except for pressure, all other fields are constrained by an 

OpenFOAMzeroGradient boundary condition at the outlet. The 

outlet pressure boundary condition is set to 0.993 atm [40] 

while the jet, pilot, and coflow inlet pressure boundary 

conditions are all set to zeroGradient. Using the Sandia data set 

and an integral length scale of 1.4 mm, [68] the velocities, 

turbulent kinetic energies, and turbulent dissipation rates at the 

jet, pilot, and coflow inlets are determined. For the velocities k 

and, the intake profiles are discretized along the 30 cells of the 

pilot and the jet. The possible values of the mixture fraction are 

discretized into 

 

There are more data points clustered close to the stoichiometric 

mixture fraction than in any of the other 60 bins. There was very 

little variation in the predictions while doing simulations with a 

larger number of bins (90). In this way, we can say that the 

simulations do not rely on the degree of resolution in the space 

of mixture fractions. The conditional species mass fractions in 

CMC are based on a burning flamelet profile at the intake nodes. 

Mixed boundary conditions for CMC (burning in pilot, inert 

everywhere else) are not conceivable because of the small 

number of cells in the radial direction. When using a delta 

function mixture fraction PDF with the coflow, pilot, and fuel 

mass fractions of 0, 0.27, and 1, respectively, the flamelet 

profiles are defined in a way that preserves the right 

unconditional boundary values. 

Setting the conditional mass fraction of CO2 and H2O profiles to 

generate high reaction rates from the TGLDM tables is the 

starting point for the CSE calculations. When the concentrations 

of YCO2 and YH2 O are not high enough to sustain combustion, 

the startup procedure is stopped. After this is done, the 

inversion yields the values for (YCO2 |) and YH2 O. 

Based on prior CSE research into non-premixed jet flames 

[27,34,35], 19 ensembles are defined as axial slices of the 

computational domain, making up a 19x1 CSE grid for the CSE 

simulations. It has been shown that CSE ensembles are not 

uniformly distributed, with a larger concentration towards the 

nozzle exit, where substantial changes to the mixture fraction 

are anticipated. In contrast, a 25x5 CMC grid is used in the CMC 

simulations. Thus, in the axial direction, the two simulations 

have the same spatial resolution, but in the radial direction, the 

CSE simulations assume the conditional averages stay constant. 

When comparing the CSE findings to the experimental data, a 

coarser CMC grid was tried and was shown to provide bigger 

disparities. Since it is well-known that the accuracy of CMC 

decreases when the number of cells is decreased, it is not 

practical to employ a coarser CMC grid in this case.SandiaflameD 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3.Temperature contours with a schematic of the CSE ensembles (left) and 

CMCgrid(right)superimposed. 

 
 
 

presently existing circumstances. Unlike the CMC grid, the CSE grid 
must have a sufficient number of re- acting cells for the inversion 
process, hence it could not be manufactured as fine as the CMC 
grid. Increasing the resolution of the CFD mesh and hence the 
number of reactive cells in the en- sembles is required for this. In 
comparison, CMC may use a grid with the same precision as CFD. 
Still, the CMC transport equations can't be solved without taking 
into account the large number of CMC cells that reside in the 
coflowing air. Considering the lack of fuel and chemical processes, 
CSE excludes these cells from the inversion process. As a 
consequence, it is not anticipated nor essential that the CMC and 
CSE grids be equal in order to get comparable quality results. As 
shown in Fig. 3, the CSE ensembles and CMC grid are depicted in a 
schematic form. 
 
 

3. Results 

 
The findings of the simulations of the Sandia flames are broken 
down into four categories for examination. It begins with a 
comprehensive breakdown of the Flame D simulation findings. 
The available experimental data at six axial points is first 
compared to the Favre-averaged velocity, mixture percent, and 
its root mean square (rms) generated from the CSE and CMC 
simulations. The conditional temperature, conditional mass 
fractions of CO2, H2O, CH4, H2, and OH, and experimental 
profiles at the same six axial positions are then compared. 
Although experimental data exists for a wider range of species, 
only a representative sample was included in this analysis. We 
may draw the same conclusions about other animals. Following 
this is a comparison of the Favre-averaged mass fractions and 
temperatures. Next, the Flame E findings are shown, with special 
attention paid to the area just next to the nozzle, where the 
CMC and CSE values diverge. For reasons that will be detailed 
below, neither model, in its present configuration, was able to 
provide satisfactory findings for Sandia flame F. Finally, the 
computational cost of CSE and CMC are compared and 
contrasted, and the benefits and drawbacks of each method are 
discussed. 
 
 
 
The 5.1.1 Field of Turbulent Flow 
 
As shown in Fig. 4, the axial velocity derived from the CMC and 
CSE simulations agrees well with the actual data at six axial 
locations. The agreement between CMC, CSE, and the 
experimental data is excellent, with all values falling within 3 
m/s of each other extremely near to the nozzle at y/D = 3. 
Further downstream at y/D = 15, the velocities predicted by 
CMC and CSE for radial locations between r/D = 1 and r/D = 2 

are somewhat overpredicted compared to the observed profile. 
The centerline velocities generated from both the CMC and CSE 
simulations are around 16% greater than the value measured 
empirically at y/D = 30. The CMC and CSE estimated velocities 
off-axis accord well with the experiments. The first three axial 
points show a remarkable degree of agreement between the 
two numerical profiles. 
 
distinct from one another. Greater discrepancies in velocity 
between the CMC and CSE models are shown farther 
downstream, at y/D = 45 and y/D = 60. Specifically, the 
centerline experimental velocity is overestimated by around 
20% when CSE is applied at y/D = 45. 
 
CMC's estimate for the centerline velocity is around 12% greater 
than the value derived through experiments. At y/D = 60, a 
similar pattern is observed: the center-line velocity calculated 
using CSE is 3 m/s higher than the actual data, but the velocity 
obtained using CMC is only around 2 m/s higher. Since the 
identical numbers for velocity, k, and are applied to both CMC 
and CSE, the discrepancies in the anticipated velocity profiles 
cannot be explained by changes in the simulations' boundary 
conditions. Instead, as demonstrated in Section 5.1.5, the 
divergences in the velocity field may be traced back to 
discrepancies in the temperature profiles produced by CMC and 
CSE. Any change in the temperature profiles will cause a change 
in the jet's spreading rate due to changes in density, k, and. In 
spite of these minor deviations, the present velocity estimates 
agree with those of earlier numerical studies for the identical 
flame [7,55,69]. At this point, it is safe to say that both 
simulations produce a turbulent flow-field that is consistent with 
experimental results. 
 
 
 
5.1.2 Field of turbulent mixing 
 
The conditional species mass fraction is determined using the 
mixture fraction probability density function (PDF) in CMC and 
CSE. So, it's crucial that both CSE and CMC provide accurate 
predictions of the mean mixture fraction and its rms. In Figs. 5 
and 6, we compare the mean mixture percent and its rms field 
from the CMC and CSE simulations to the experimental results at 
the same six axial sites. 
 
Figure 5 displays the results for the values of y/D equal to 3, 15, 
and 30. 
 
CMC and CSE projected mixture fraction profiles are consistent 
with experimental results. At y/D = 45, farther downstream, 
more striking variations emerge. Here, CSE's profile shape more 
closely matches experimental results, but CMC's peak profile 
fraction prediction is more accurate. The CMC findings reveal a 
greater overpre- prediction of the mixture fraction profile 
compared to the CSE predictions between radial sites r/D = 2 
and r/D = 5. Within 10%, the CSE predictions and the 
experimental profile correspond well at the final axial site (y/D = 
60). The CMC values are likewise in excellent agreement with 
the experimental profile here, although they overpredict the 
mixture percent at radial positions between r/D = 2.5 and r/D = 
7. 
 
Several variants in the combination frac- 
 
differences in tionrms between the two groups of numerical 
simulations. rms profiles from CMC and CSE are similar to one 
another close to the center. 
 
correspond very closely throughout the whole axis. The 
experimental root-mean-square (rms) values between r/D = 1 
and y/D = 3 are overpredicted by both CMC and CSE.0.5 

 
 



 

 
 

 
Fig.7. CSE(solidlines)andCMC(dashedlines)conditionalCO2massfractionprofilescomparedtotheexperimentaldata[40](symbols)atdifferentaxiallocations. 

 
should be exactly the same since they have the same principles in 
common. However, due to the fact that the conditional averages are 
generated using different methods—matrix inversion for CSE and 
transport equations for CMC—each model involves its own set of 
assumptions, modeling, and numerical mistakes. For this reason, it's 
possible to see deviations from the projected conditional mass 
fractions. The CO2 and H2O conditional mass fractions computed by 
CMC and CSE are first compared to the available experimental data 
[40] in Figs. 7 and 8. 
 
The CSE simulations rely heavily on the conditional mass fractions of 
CO2 and H2O, which are retrieved together with the conditional mass 
fractions of the other species and the conditional temperature from 
the TGLDM tables, making accurate predictions of these quantities 
vital. As can be observed in Fig. 7, CSE does a decent job of predicting 
the conditional mass fraction of CO2 at y/D = 1 and y/D = 3, as 
compared to the experimental profiles. 
 
Very excellent agreement with the trials is shown between = 0 and = 
0.5 in these spots. Under-predictions of about 25% are seen for values 
between 0.5 and 0.77.



 

 

 

 

 
Fig.8. 
CSE(solidlines)andCMC(dashedlines)conditionalH2Omassfractionprofilescompare

dtotheexperimentaldata[40](symbols)atdifferentaxiallocations. 

 

calculations of YCO2 using CSE, with the exception of the case when the value 
of YCO2 is larger than what is seen experimentally ( 0.7). Mistakes in the 
predicted mixture fraction rms profiles, which would have an effect on the 
PDF, may be to blame for the disparities between CSE and the experimental 
results at these sites. At y/D = 1, the CSE and experimental numbers differ by 
around 2% from the CMC predictions, which reveal a peak in the conditional 
CO2 mass fractions. While CMC and CSE profiles agree within 11% for lean 
mixes, CMC does a better job of capturing the conditional profiles for > 0.5, 
with an underprediction of just 5% compared to 33% when using CSE at =0.6 
and y/D = 1. CSE and the experimental data have agreed extremely well over 
the last y/D = 3, with the largest discrepancy being about 2% at y/D = 15 for = 
0.31. These are areas of very low population density, where 
 
Both CMC and CSE have their own unique characteristics. Therefore, the CMC 
and CSE predictions are quite near to each other at places far from the nozzle 
where the boundary conditions do not affect the expected conditional 
averages. This convergence is encouraging since the conditional averages are 
determined by two unique approaches. This also shows that the conditional 
averages can be reproduced accurately by the inversion process employed in 
CSE without the usage of a submodel. 
Figure 8 shows that similar patterns may be seen for the conditional mass 
fraction of H2O derived from CSE as it is close to the nozzle. Good agreement 
is shown at y/D = 1 and y/D = 3, but the peak of YH2 O is underestimated by 
around 10% at y/D = 1. With respect to lean mixes, the CMC findings match 
well with the CSE and experimental data at the same sites, to within around 
10%. However, the H2O conditional mass frac- tions determined from CMC 
are almost 24% lower than the experimental values for rich mixes ( 0.36). It is 
possible that the inconsistencies in the YH2 O profiles at y/D = 1 and y/D = 3 
compared to the predictions of (YCO2 |) are attributable to the choice of 
boundary conditions in CMC at the pilot boundary. At axial coordinates y/D = 
5 and outward, Roomina and Bilger [7] detail the adiabatic equilibrium 
compositions of all reactive scalars except nitric ox- ides (NO). It is claimed 
that this approximation has little effect on downstream places. The 
 
The present study's CMC findings corroborate this finding. 
When extrapolated to downstream regions, the CSE and CMC profiles are 
quite similar to one another, with a discrepancy of just 0.01 between them 
and the experimental data for 0.35. Comparatively, the conditional mass 
fraction of H2O is more than the experimental value for rich mixes with 0.37 
0.77. The study of Roomina and Bilger [7] at y/D = 30 utilizing a wide range of 
chemical processes, including GRI 2.11[70], shows a similar pattern, with 
(YCO2 |) for rich mixes being appropriately predicted but (YH2 O|) being 
overestimated. For all axial sites beyond y/D = 3, CMC and CSE agree, proving 
that the inversion method used in CSE produces the same conditional profiles 
as CMC. 
Figure 9 shows that the CSE and CMC conditional mass fraction of CH4 closely 

tracks the experimental profile at y/D = 1 and y/D = 3. Since the primary com- 
bustion products, (YCO2 |) and (YH2 O|), are well predicted (Figs. 7 and 8), 
the strong agreement revealed by CSE and CMC at these sites for fuel lean 
mixes is to be anticipated. The increased conditional mass fractions of H2O 
found for fuel rich mixes in both sets of simulations are reflected in the CMC 
and CSE profiles that are near to and below the actual values for 0.5 at y/D = 
15 and y/D = 30, as shown in Fig. 8. As is shown in the CMC findings of 
Roomina and Bilger [7], the conditional re- action rates of CH4 are 
overpredicted for fuel rich combinations in most flame areas. 
FIGURE 10: The H2 mass fraction under various conditions. H2 has a higher 
disparity between the conditional mass fractions predicted by CSE and CMC 
compared to CO2, H2O, and CH4. Both the CSE and the CMC pro-files shrink 
down at y/D = 1, whereas the experimental profile remains quite wide. Both 
CMC and CSE overestimate the peak conditional mass fractions of H2 at this 
point, however CSE does a somewhat better job of forecasting where this 
peak will be in the context of the total mixture fraction. The H2 values for rich 
mixture fractions are underestimated by CSE, although the CMC and CSE 
agree well for lean mixture fractions at downstream y/D = 3. CMC and CSE 
forecasts at y/D = 15 accord rather well with the experimental profile. Farther



 

 

 

   
 

Fig.11. YH2   
massfractionfromTGLDMtableatη=0.3478. 

 

Fig. 9.  CSE (solid lines) and CMC (dashed lines) conditional CH4  mass fraction pro-filescomparedtotheexperimentaldata[40](symbols)atdifferentaxiallocations. 

 

 

   
 

  
 

 
Fig. 10.  CSE (solid lines) and CMC (dashed lines) conditional H2  mass fraction pro-filescomparedtotheexperimentaldata[40](symbols)atdifferentaxiallocations. 

 
 
 

The CMC values at y/D = 30 and y/D = 45 downstream are consistent 

with the experimental data. The same holds true for the y/D = 30 case 

with 0.5 CSE predictions. The angular CSE profile is noteworthy, and it 

can be seen at y/D = 45 and y/D = 60 as well. The interpolations in the 

TGLDM tables that make use of the convergent conditional CO2 and 

H2O profiles are the root cause of these shattered CSE profiles, not 

the lack of convergence in the CSE solution. One of the drawbacks of 

the current chemical tabulation approach adopted for CSE may be 

seen in these broken profiles. A mass fraction of H2 inside the TGLDM 

manifold at = 0.3478 is shown in Fig. 11. 

When looking at the TGLDM tables, keep in mind that YH2 = 0 is the 

initial boundary condition for all trajectories. Figure 11 shows that, as 

expected 

 

 

 

The mass fraction of H2 at the manifold's boundaries is 0 as a 

consequence of this approximation. As a result, the profile of YH2 

observed in Fig. 10 may be seen towards the edge of the TGLDM 

tables due to the presence of high gradients. CSE-TGLDM for a 

sequence of methanol flames has been the subject of a similar 

observation [30]. The conditional mass fractions of YH2 at an axis 

height of y/D = 30 are larger than the experimental values for rich 

mixes. Figure 7 shows that the projected conditional mass fraction of 

CO2 is in line with the actual results, but the expected value of YH2 O 

is almost 30% higher. Higher H2 levels are exhibited in Fig. 10 because 

the present CSE and CMC simulations overestimate the consumption 

of methane (CH4) and oxygen (O2) for these values of. CMC findings 

are more consistent and accurate in capturing the conditional mass 

fraction for both lean and rich mixtures, with smoother profiles. Also, 

unlike CSE, CMC does not grossly overpredict the conditional mass 

fraction of H2 for rich mixes at y/D = 30. Due to the low PDF values 

seen in rich combinations, the discontinuities in the CSE profiles 

observed in these mixtures will be smoothed out in the Favre-



averaged profiles, as will be demonstrated in Section 5.1.5. 

The present study's focus is on the YOH| conditional mass fraction. 

Figure 12 shows that both CMC and CSE successfully capture the 

highest position of conditional OH mass fraction at y/D = 1. CSE, 

however, overestimates the peak's amplitude by around 65%, 

whereas CMC is within 2% of the actual value. The anticipated 

conditional mass fraction of OH derived from CSE near the nozzle has 

the highest discrepancy when compared to the experimental data, as 

is the case for the other minor species. Both rich and lean mixes 

grossly underestimate the conditional mass fraction of OH at these 

sites (y/D = 1 and y/D = 3). Similarly to YH2 , the boundary constraints 

imposed on YOH at the manifold's borders cause the discontinuities 

seen in the conditional profiles. On the other hand, the CMC findings 

more accurately reproduce the breadth of the (YOH|) across all axial 

positions. We suspect that the proximity of the results to the table 

borders where the OH concentration is set to zero for the chemical 

tabulation accounts for the excellent agreement seen for CSE at y/D = 

60. As a result, the lower OH values achieved by interpolation would 

be attributable to interpolation rather than a fundamental 

improvement of the CSE model as compared to CMC. As a result, 

better approximating the mass fractions of minor species in CSE would 

benefit from enhancements to the present TGLDM boundary 

conditions. 

 

 

 

 
 

   

 
Fig.12.CSE(solidlines)andCMC(dashedlines)conditionalOHmassfractionpro-filescomparedtotheexperimentaldata[40](symbols)atdifferentaxiallocations. 

 

 

   

 

 

   

 
Fig.13.CSE(solidlines)andCMC(dashedlines)conditionaltemperatureprofilescomparedtotheexperimentaldata[40](symbols)atdifferentaxiallocations. 

 

 

TheoverpredictionofOHinCMCisalsoobservedinLES-CMCsim-

ulationsof[55]andmaybeduetochemicalmechanismused. 

 

5.1.3. Conditionaltemperature 

In Fig. 13, we see the CSE and CMC findings alongside the 

experimental conditional temperature patterns. Figure 13 shows 

that both the CSE and CMC simulations provide accurate 

predictions about the overall shape of the conditional 

temperature. For the most part, the peak temperature agrees with 

the experimental results, although only marginally. High 

temperatures seen in the CMC and CSE simulations may be due to 

the exclusion of radiation from the present investigation. At the 

nozzle's tip, the CSE and CMC diverge somewhat. The peak 

temperature predicted by CSE is around 8% higher than the 

experimental and situated at y/D = 1. 

 



 

Figure 14: Radial temperature and Favre-averaged species profiles 

for CSE (solid lines) and CMC (dashed lines) compared to the 

experimental data [40] (symbols) at y/D = 15. 

 

little below the CMC profile's ideal blend fraction. Maximum 

temperatures predicted by CSE and CMC vary by around 5% at this 

site. A higher peak temperature at a slightly greater mixing percent 

is seen for CMC when y/D = 3. The predicted temperatures from 

both CMC and CSE are within 100 K of each other away from the 

nozzle, which is in keeping with the excellent predictions shown in 

Figs. 7 and 8 for the principal product species, and is also in good 

agreement with the experimental profiles. 

 

Estimates based on Favre's averages 5.1.4 

Good agreement is established between the projected conditional 

mass fraction of main species and the conditional temperatures 

and the experimental results. However, significant variations in 

YH2 and YOH| are seen. To assess how these deviations affect the 

unconditional Favre-averaged quantities is the goal of this section. 

For this analysis, we compare the flame at three different axial 

locations: y/D = 15, y/D = 30, and y/D = 45. 

Fig. 14 displays a comparison between the experimental data and 

the Favre-averaged mass fractions of CO2, H2O, CH4, H2, and OH 

derived from CMC and CSE for y/D = 15. If you look at Fig. 14, you'll 

find that for r/D = 1.5, the Favre-averaged mass fraction of the 

main species determined from CMC and CSE agree within a margin 

of error of less than 0.01. This concordance makes sense, given 

that both combustion models anticipated comparable conditional 

profiles for these species. CMC and CSE predictions are in good 

agreement with experimental pro- files at the centerline, but are 

noticeably higher for radial locations greater than 2D. This may be 

because of the overprediction of the mean mixture percentage and 

its variance, as seen in Figs. 5 and 6, which may be attributable to 

the fact that radiation was overlooked throughout the 

computations. Both CMC and CSE overestimate the experimental 

peak for the mean mass fraction of H2 by 73% and 13%, 

respectively. This is to be anticipated given the overprediction in 

the conditional profiles, as seen in Fig. 10. In the same vein, the 

conditional profile trends are supported by the CMC and CSE, 

which both provide peak YOH levels that are around 72% and 36% 

greater than the experimental value (Fig. 12).



 

 
 

Fig.15.CSE(solidlines)andCMC(dashedlines)radialtemperatureandFavre-averagedspeciesprofilescompared  to  the  experimental  data  [40](symbols)  aty/D=30. 

 

 

Fig.16.CSE(solidlines)andCMC(dashedlines)radialtemperatureandFavre-averagedspeciesprofilescompared  to  the  experimental  data  [40](symbols)  aty/D=45. 

Favre-averaged forecast temperatures trend in the same direction as 
those for the main taxa. Favre-averaged mass fractions and 
unconditional temperatures retrieved from the CMC and CSE 
simulations are compared to the experimental data in Figs. 15 and 16. 

The CMC and CSE profiles show the same general 

tendencies as stated for y/D = 15 at y/D = 30. 

Consistent with the findings for the conditional 

profiles, the CMC and CSE values are extremely near 

to one another, frequently being indistinguishable. 

However, the conditional mass fractions of H2 

obtained by CSE are much lower than the CMC  

 

 

 
values, making it intriguing to compare the two sets of data. 



 

   
 
 

   

Fig.17.CSE(solidlines)andCMC(dashedlines)radialtemperatureandFavre-averagedspeciesprofilescompared  to  the  experimental  data  [40](symbols)  

aty/D=7.5fortheSandiaEflame. 

 
When compared to CMC and experimental data, this resulted in an 

overprediction of rich combinations. Having higher CSE values of YH2 for rich 

mixtures isn't going to change the results of the unconditional mass fraction 

analysis, as this demonstrates. The largest gap is found to be between 39 and 

73% when comparing the peak YH2 between the CMC and CSE simulations 

with the observed values. 

 

differences between numerical results and experimental data. 

Similar patterns emerge at y/D = 45 for the Favre-averaged mass percentage 

of species and the unconditional temperature. When comparing the two 

combustion models, the Favre-averaged mass fractions of the main species 

and the temperature (shown in Fig. 16) are quite similar. 

 

Similar to upstream locations, minor species YH2 and YOH exhibit the largest 

differences in abundance across the two combustion models. 

Curiously, the values of YOH at the centerline and the peak are 

overestimated by CSE and CMC by around 26 and 33%, respectively. When 

compared to experimental data, CMC's prediction for the peak value of YH2 

is 25% lower, demonstrating better agreement with the facts. 

 

Sandia 5.1's E-flame 

 

Temperature and species mass fraction profiles for the Sandia flame E in both 

ideal and realistic circumstances are shown in Figs. 17 and 18, respectively. 

Reduced temperature and OH levels are indicative of the flame's extinction, 

which peaks at y/D = 7.5. This study's CMC is unable to identify the pattern 

since RANS almost eliminates localized extinction. In this study, simulating 

using a mixed inlet boundary condition (burning in pilot, non-reacting 

everywhere else) did not lead to more accurate predictions from the CMC 

(not shown). Using mixed inlet boundary conditions for the Sandia D and E 

flames, as in the previous RANS-CMC simulations [52,53], led to an 

overestimation of Flame E's temperature. According to the findings shown in 

[55], which are based on LES-CMC simulations of Flame F, this tendency may 

be accurately captured by the method. Significant elements in LES-CMC 

include time-varying velocity variations and mixed inlet boundary conditions. 

simulations of the Sandia flames. 
 

 
 

 

 

 
 

 
Fig.18.CSE(solidlines)andCMC  (dashed  lines)  condtional  temperature  

andspeciesprofilescomparedtotheexperimentaldata[40](symbols)aty/D=7.5fortheS

andiaEflame. 

 
 
 
 
 
 
 

 

needed to record extinction [55]. By causing fluctuations in the 
jet's speed, inert profiles in the fuel jet may be convected 
radially outward. When added to the extinction brought on by 
a high scalar dissipation rate, this phenomenon becomes 
impossible to reverse. In contrast, as shown in [55], the 
extinction process through the radially outward convective 
transport is not present when burning flamelets are provided 
as a boundary condition in the fuel jet. Even with the mixed 
boundary condition, with inert boundary conditions in the fuel 
jet, RANS is unable to recreate the velocity fluctuations, and 
the average radially outward convection is insufficient to 
adequately depict the extinction process. In light of this, it is 
clear that the present research cannot make reliable 
predictions about the end of the world. 

In contrast, CSE is rather accurate in capturing the cooling 
effect of increasing jet velocity. When comparing Flame D with 
Flame E, the current research finds that Flame E has lower peak 
values for temperature and species. This may be seen as a 
result of the inversion process creating a link between the 
unconditional and conditional mass fractions. The 
unconditional mass fractions of CO2 and H2O will fall as the jet 
speed rises. The decreasing conditional mass fractions reflect 
the time required for the change in the unconditional mass 
fractions. However, for OH and H2 with levels below the limits, 
this drop is too pro- nounced. 



Both models failed to generate reliable predictions for Sandia 
flame F using the present conditions specified in Section 4. As 
was shown above for Flame E, the inaccurate prediction of 
extinction in CMC results from the use of RANS and the 
boundary condition imposed. Additional increases in jet 
velocity caused blow-off in the case of CSE. Given that the CSE 
forecasts underpredict the species mass fractions and 
temperature for Flame E, this pattern makes sense. Species 
mass fractions and temperature drop as velocity increases, and 
this is what causes a blow-off. 

Computational Time Comparison 

Currently, the CSE code has not been optimized in any way. For 
matrix inversions of a comparable size, recent research by 
Hong and Bushe [71] has shown that switching from the LU 
decomposition matrix solver utilized in the present work to the 
LSQR solver may result in a 19–55% reduction in computing 
time. On the other hand, the present CMC code is the result of 
a more protracted period of development by groups at Ghent 
University [15,16] and the University of Cambridge [12,17,18]. 

It has been determined that the CSE submodel alone accounts 
for over 85% of the computational time in RANS-CSE. Matrix 
inversion, extraction of conditional species and reaction rate 
data from TGLDM tables, and computation of unconditional 
species and reaction rates are all part of the CSE submodel. 
15% of the CPU time is spent calculating transport equations 
for pressure, velocity, mixture fraction, mixture fraction 
variance, and mass fraction of CO2 and H2O. The CSE 
combustion model takes around 7.6 seconds for a single 
timestep when run on a cluster of Intel Xeon E5-2680v3 
processors operating at 2.5 GHz utilizing a single processing 
core. The CMC subroutines account for almost all of the CPU 
time in the RANS/CMC computations. Single timesteps for CMC 
on the same cluster operating on five cores take around 3.6 
seconds, with a total computational resource need of about 18 
CPU seconds. In the current computational cost, the CPU time 
required to build the TGLDM tables is not accounted for. CSE 
looks to be quicker than CMC for the present calculations 
based on CPU time, without any optimization and including the 
time required to generate the chemical tables. Furthermore, 
based on the time needed to determine the conditional 
average of a single species, a rough estimate of the computing 
time necessary for CSE without optimization or tabular 
chemistry is provided. As used in CSE, this is the sum of the 
times it takes to do the inversion and to solve the 
unconditional species transport equation. In the current 
investigation, a single conditional average requires around 0.32 
seconds of CPU time to calculate. On the other hand, a single 
CMC transport equation can be solved in around 0.12 CPU 
seconds. Therefore, CSE is about 2.6 times slower than CMC in 
calculating the conditional av- erages in the absence of 

optimization and chemistry tabulation. In CSE, without tabular 
chemistry, this data allows for a ballpark approximation of the 
calculation time required. A CSE model without tabular 
chemistry would need about 21.8 CPU seconds, which is 20% 
greater than CMC assuming the only com- putational time 
difference between the two programs was the computation of 
the conditional averages. 

Comparison of the CMC and CSE methodologies: 5.2. 

Given the identical numerical setup, sections 5.1.1-5.1.5 
showed that CMC and CSE could generate predictions that 
were in excellent agreement with each other. The advantages 
and disadvantages of each method used in the present 
research are discussed below. 

CMC calls for far more intricate boundary conditions to be put 
up correctly than CSE does. The mixture percent, its variance, 
and the mass fraction of YCO2 and YH2 O are all necessary 
boundary conditions in CSE, and they may be easily computed 
from experimental data. Comparatively, CMC necessitates 
boundary conditions for mixture fraction, its variance, 
conditional temperature, and conditional mass fraction of all 
species. As a result, these conditional profiles have to be 
estimated rather than acquired directly from the experimental 
data. 

As a result of how the CMC is now implemented, incorporating 
new chemical schemes is simpler. Substituting one chemical 
mechanism for another has no effect on the CMC recipe. In 
addition, CMC can simulate intricate fuel composi-without any 
kind of special treatment. The TGLDM method is used for 
tabulation of chemical data in the current CSE model. Thus 

 

 

 

 

 

 

 

,Table1 

StrengthdescribedinSection5.4.Levelsofdifficultytoaccomplisheachtask:low

(easy),mediumandhigh(difficult). 
toimplement a new chemical mechanism, new tables must be  
predicting the minor species at some locations. 

Further,theinclusionofcomplexfuelsintotheTGLDMtablesrequir

esspecial considerations to correctly construct the boundaries 

of themanifold. Specifically, a method for accurately 

estimating the massfractionofminorspeciesandmulti-

componentfuelsalongtheboundary of the TGLDM is required. 

In the current study, 

CMCproducessmootherconditionalprofilesfortheminorspeciesa

tallaxiallocations.CSEyieldsprofilesfortheconditionalaverages 

Task CMC CSE 
 

 

Boundaryconditionsetup High Low 

Inclusionofchemistry Low Medium 

Initialization Medium Medium 

Meshforconditionalaverages Low High 

Expandingtomorecomplexcases 

Extinction High High 

Differentialdiffusion High High 

Soot High High 

Radiation Medium Medium 
Extensiontoothercombustionregimes High Medium 

of certain inconspicuous species, whose roughness results from 
the fact that one does not need to rely on tabular chemistry in 
order to determine their composition. 
 
 
mean values for the rare species derived via the inversion 
technique. Practicing chemistry requires pretabulating it for 
computational efficiency. Many CSEs, most notably RANS, offer 
tabulations of chemical data. However, CMC is different since it 
automatically solves the transport equations. 
CMC and CSE simulations need identical caution throughout 
their respective startup phases. A properly burning flame in 
CMC requires precise boundary conditions for the conditional 
averages. Selecting the initial conditional profiles for YCO2 and 
YH2 O in CSE involves some knowledge and expertise to 
guarantee that YCO2 and YH2 O reach adequate levels to 
continue combustion. Blow off may occur if the ensemble's 

initial response rates are too low, which can happen if the 
conditional profiles for the conditions are not chosen carefully. 
Selecting the CSE ensem- bles, which is presently done with a 
priori knowledge of the flame, is more difficult than generating 
the CMC grid. Sophisticated ways to choose the best en- 
semble to use have been studied as of late [72]. Since CSE 
needs the ensembles to be big enough to enable sufficient 
information for the inversion process, they cannot be refined 
to the same degree as CMC ensembles. 
The CMC technique has the potential to accurately foresee the 
occurrence of both extinction and revival. The precision of the 
forecasts, however, is sensitive to a number of aspects that 
need specific attention: the conditional scalar dissipation 
modeling [19,55]; transport in the cross stream direction; and 
the selection of CMC boundary condition. The computational 
cost rises when dealing with situations that need a CMC 
formulation in several dimensions. Insightful knowledge of the 



flame may be achieved by solving CMC transport equations. 
Some data on flame stabilization [15] and extinction [19] 
processes may be acquired, for instance, by analyzing the 
contributions of the various components in the CMC equation. 
These findings suggest that CSE is successful in representing 
certain features of extinction. The present research shows that 
a lot of work has to be done before CSE can reliably anticipate 
extinction and re-ignition. In all likelihood, LES with a double-
conditioned CSE formulation is required, although this has not 
yet been performed. 
One of CMC's key features in terms of model formulation is 
that information is transferred across CMC cells through the 
transport equation, and differential diffusion may be added to 
the underlying conditioned transport equations. However, 
including differential diffusion into CMC is still not simple [73]. 
The conditional averages in CSE are computed separately from 
one another, and the model does not account for the diffusion 
of the conditional averages. In order to implement differential 
diffusion in CSE, the chemical tables would need to be updated 
to reflect this concept. It is anticipated that incorporating soot 
or radiation into CMC [13] or CSE [31] would provide a similarly 
formidable challenge. Premixed, partly, and doubly con- 
ditioned formulations all follow the same general structure, 
which is a key benefit of the CSE method.form  as  that  of  non-
premixed  CSE.  The CMC  approach  cannot  be 
easily extended to a doubly conditioned formulation as 

additionalunclosed terms appear which require closure. For 

clarity, a sum-

maryofthosestrengthsandweaknessesofeachcombustionmod

elis given in Table 1, with different levels of complexity from 

low(easy),mediumtohigh(difficult). 

 
4. Conclusions 

 
Both CMC and CSE are studied here by comparing the Sandia 
flames side by side. To reduce the likelihood of inconsistencies 
between the two models, the identical CFD numerical techniques, 
mesh, and boundary conditions are utilized for both sets of 
simulations. The results of CMC and CSE are compared to extensive 
experimental data. 
Near the nozzle exit, the turbulent flow and mixing fields in the 
CMC and CSE simulations are consistent with experimental results. 
Away from the centerline and farther downstream, there are 
noticeable inconsistencies between the CMC and CSE profiles, as 
well as with the experimental data. Near the nozzle, the mixture 
fraction rms exhibits the same trends and overall shape for both 
CMC and CSE models. In the downstream region, the rms values of 
the mixture fractions are less in the CMC findings compared to the 
CSE and the experimental data. The anticipated temperature 
profiles from CMC and CSE are different, which accounts for the 
discrepancy in forecasts. 
For lean mixtures, the conditional mass fractions predicted by CMC 
and CSE for the principal species are in excellent agreement with 
actual data downstream of the nozzle, with the CMC and CSE 
findings frequently being indistinguishable. The conditional mass 
fractions of CH4 and H2O in fuel-rich mixes are underpredicted and 
overestimated, respectively, at particular axial sites. The main 
features of the experimental profiles are recapitulated by the CMC 
and CSE conditional mass fractions of the minor species and 
conditional temperature. Larger discrepancies between CMC and 
CSE are seen for the minor species, and they are due to the various 
approaches used to determine the chemical source-term 
(calculated during the simula- tion in CMC and retrieved from pre-
tabulated chemistry tables in CSE). Large gra- dients at the 
boundary in the TGLDM tables lead to bigger deviations in the CSE 
conditional mass fractions of H2 and OH in fuel-rich mixes. 
Differences between CMC and CSE at the nozzle exit are explained 
by the use of CMC boundary conditions. 
 
In both CMC and CSE simulations, the same general tendencies are 
reproduced from the Favre-averaged profiles, and equivalent 
quality simulation results are achieved. It has been predicted by 
CMC and CSE that the flame would spread outward from the 
nozzle. The volume and broad patterns of the downstream are 
accurately reproduced by CMC and CSE. profiles of the main 
temperature and species groups. For the minor species derived via 
CMC and CSE, the disparities between the experimental data and 
Favre-averaged profiles are higher than for the conditional profiles. 
The jet velocity, turbulence-chemistry interactions, and local 
extinction are all more prominent in Sandia flame E, making the 
choice of combustion model more crucial. The CSE simulations 
mimic the higher level of local extinction, which is observable in 

lower temperatures and large species mass fractions, but to an 
unrealistic degree. There is a disconnect between this tendency 
and how CMC is currently implemented. Only with LES is it possible 
to account for the velocity fluctuations and implement more 
advanced boundary conditions, both of which are necessary for 
achieving optimal results with CMC. As a corollary, conditional 
scalar dissipation modeling is crucial. Both models failed to 
successfully simulate Sandia flame F at the present conditions. 
 
 
 
 

A look at the computing time needed for each combustion model 
reveals that CMC takes higher computational resources for the 
present flame. Further, some of the benefits and drawbacks of 
each combustion model are discussed. The CSE method is easier to 
use when it comes to defining the boundary conditions, while the 
CMC method is more convenient when it comes to setting up the 
mesh needed for the conditional averages. 
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