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ABSTRACT:This study compares Deep Reinforcement Learning (DRL) and Model 

Predictive Control (MPC) for Adaptive Cruise Control (ACC) design in car-following 

scenarios. A first-order system is used as the Control-Oriented Model (COM) to approximate 

the acceleration command dynamics of a vehicle. Based on the equations of the control 

system and the multi-objective cost function, we train a DRL policy using Deep 

Deterministic Policy Gradient (DDPG) and solve the MPC problem via InteriorPoint 

Optimization (IPO). Simulation results for the episode costs show that, when there are no 

modeling errors and the testing inputs are within the training data range, the DRL solution is 

equivalent to MPC with a sufficiently long prediction horizon. Particularly, the DRL episode 

cost is only 5.8% higher than the benchmark solution provided by optimizing the entire 

episode via IPO. The DRL control performance degrades when the testing inputs are outside 

the training data range, indicating inadequate generalization. When there are modeling errors 

due to control delays, disturbances, and/or testing with a High-Fidelity Model (HFM) of the 

vehicle, the DRL-trained policy performs better with large modeling errors while having 

similar performance as MPC when the modeling errors are small.  

Index Terms—Deep Reinforcement Learning, Model Predictive Control, Adaptive Cruise 

Control.  

INTRODUCTION  

Reinforcement learning is a learning-based 

method for optimal decision making and 

control [1]. In reinforcement learning, an 

agent takes an action based on the 

environment state and consequently 

receives a reward. Reinforcement learning 

maximizes cumulative discounted reward 

by learning an optimal state-action 

mapping policy through trial and error. 

The policy is trained via Bellman’s 

principle of optimality, which dictates that 

the remaining actions constitute an optimal 

policy with regard to the state resulting 

from a previous action. Deep 

reinforcement learning (DRL), which 

utilizes deep (multi-layer) neural netsas  
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policy representations, has drawn 

significant attention as its trained policy 

surpassed the best human in playing board 

games [2]. Different DRL algorithms have 

been proposed which include Deep Q-

Networks [3], Trust Region Policy 

Optimization [4], Proximal Policy 

Optimization [5], and Deep Deterministic 

Policy Gradient (DDPG) [6]. In this work, 

we use DDPG, which outputs continuous 

control actions by training a deterministic 

policy offline. DDPG is a popular choice 

for optimal control, especially for a stable 

dynamic system [7]. Model Predictive 

Control (MPC) represents the state of the 

art for the practice of real-time optimal 

control [8]. MPC benefits from a 

sufficiently accurate model of the plant 

dynamics. At each time step, a constrained 

optimization problem is formulated based 

on the plant model to minimize a defined 

cost function in a predictive time horizon. 

The optimization problem is solved online 

and only the first value of the solved 

control sequence is applied. At the next 

time step, this predictive control procedure 

is repeated with updated states. There are 

various methods to formulate the 

optimization problem with the state-space 

equations and the cost function, which 

include direct single shooting, direct 

multiple shooting, and direct collocation 

[9]. There are also various online 

optimization solvers for MPC, which 

include sequential quadratic programming 

and IPO [8]. In this work, we use IPO with 

direct single shooting, which solves the 

formulated optimization problem via 

Newton-Raphson’s method by 

successively approximating the root of the 

cost function derivative [10]. The IPO 

solution is on the interior of the set 

described by the inequality constraints and 

close to the true optimal solution. Since 

both DRL and MPC can provide optimal 

control solutions, it is of research interest 

to understand their advantages and 

disadvantages. For our comparison, we 

consider solving an optimal control 

problem for a dynamic system represented 

by a system of state-space equations. We 

do not consider training an end-to-end 

(such as image-to-control-action) solution 

using DRL [3]. Before using an example 

for comparison, one could understand 

some known differences between the two. 

Firstly, MPC demands online optimization 

that requires relatively powerful 

computing devices for real-time 

applications, which raises monetary 

concerns. For automotive engineering, 

hardware-in-the-loop simulations are 

needed to verify the real-time readiness of 

MPC before real-world deployment [11]. 
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On the other hand, offline-trained DRL 

solutions are neural nets that result in very 

little computation time during deployment. 

Secondly, MPC is model-based while, up 

to date, DRL control solutions are black-

box neural nets that lack theoretical 

assurance [12]. In this work, we do not 

focus on these known differences about the 

computing requirements and theoretical 

assurance for DRL and MPC. In this work, 

we focus on the optimality level 

(minimum episode cost) that DRL and 

MPC can achieve without and with 

modeling errors. For fair comparison, we 

use the same COM of the vehicle for DRL 

to train a policy and for MPC 

optimization. Most of the parameter 

settings are the same for both DRL and 

MPC except that the DRL reward utilizes a 

discount factor that is absent in the MPC 

optimization. This is due to the fact that 

DRL usually requires a discount factor less 

than one for convergence [13] while MPC 

normally does not include the discount 

factor. We raised a few questions that 

guided our research: (1) When there are no 

modeling errors, for example, testing on 

the vehicle COM, is DRL or MPC better in 

achieving the minimum cost? We use IPO 

to optimize for the entire simulation 

episode once to obtain a benchmark 

solution, called the IPO solution, for both 

DRL and MPC. Note that the IPO solution 

is not a receding-horizon one since it’s 

obtained by setting the predictive time 

horizon as the episode length and the 

optimization is solved only once. MPC 

usually obtains better optimality levels 

with longer prediction horizons. It may be 

interesting to see the difference between 

the DRL solution and MPC with different 

prediction horizons. The comparison of the 

DRL, MPC, and IPO solutions could 

provide insights on training policies via 

Bellman’s principle of optimality versus 

optimizing via Newton-Raphon’s method. 

It would also show the effect of the 

discount factor on the optimality-seeking 

of DRL. Additionally, we also want to 

investigate if the machine learning 

generalization issue persists in the DRL-

trained neural net. When the testing inputs 

are outside the range of training data, the 

DRL control performance may be 

compromised and lose competitiveness to 

MPC. (2) When there are modeling errors, 

does DRL or MPC achieve a lower cost? 

Modeling errors in this paper refer to the 

differences from the ACC car-following 

state-space equations. Such modeling 

errors include neglected control delays, 

disturbances, and/or the difference 

between the COM and HFM. In our 

previous work, we showed that modeling 
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errors due to neglecting vehicle dynamics 

could cause significantly degraded DRL 

control performance [14]. As both DRL 

and MPC suffer from performance 

degradation due to modeling errors [15], 

[16], this work could show whether DRL 

or MPC is better at handling modeling 

errors given that most conditions are the 

same. It’s worth mentioning that DRL has 

been shown to perform better than a rule-

based method for lane-change control in 

the presence of environment noise [17]. To 

answer the raised questions, we develop 

both DRL and MPC controllers for ACC 

car-following control. Car following is one 

of the most common behaviors of road 

vehicles [18]. ACC is a type of Advanced 

Driver Assistance System that enables 

intelligent and automated driving [19]. 

Automated vehicle development has been 

a popular interest in academia and industry 

as it could potentially revolutionize 

transportation. We develop ACC 

controllers for a power-split plug-in hybrid 

electric vehicle (PHEV), a 2015 Toyota 

Prius, since we have previously developed 

a HFM of it in MATLAB/Simulink [11], 

[20]. The HFM includes control input 

execution delay (control delay) of 0.2s, 

powertrain modeling, and external 

resistances including aerodynamic drag 

and rolling resistance. Road grade is not 

considered as we assume flat surfaces. The 

complexity of the HFM can be shown by 

its powertrain modeling, see Fig. 1. The 

powertrain modeling of the HFM includes 

the modeling of its battery, battery 

converter, electric motors, combustion 

engine, and planetary gears. In addition, 

the HFM includes a rule-based energy 

management system (charge-

depletioncharge-sustaining) to determine 

the power demands for the battery and 

engine [21]. The HFM is based on 

Autonomie, a MATLAB/Simulink 

simulation tool for automotive control 

developed by the Argonne National Lab. 

Note that the firstorder vehicle COM 

considered in this work does not include 

the control delay. 

 

Fig. 1. Schematic of the HFM powertrain 

of a 2015 Toyota Prius power-split PHEV. 

In the plot, PG means planetary gear and 

MG means motor-generator. 
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We acknowledge that our comparison of 

MPC and DRL is limited to a certain scope 

when considering the effect of modeling 

errors. On one hand, there are more 

advanced MPC and DRL methodologies. 

Our adopted MPC methodology that 

includes direct single shooting and IPO is 

typical yet simple. Research advances in 

tube-based and stochastic MPC could 

make MPC more robust and disturbance-

tolerant [15], [16], [22]. Regarding DRL, 

our adopted DDPG algorithm is a 

cornerstone but could be polished. The use 

of transfer learning and/or meta-learning 

on the DRL-trained policy could make it 

better in handling modeling errors and 

uncertainties [23], [24]. On the other hand, 

the ACC car-following control example is 

a low-dimensional task with only three 

state variables while DRL is known to 

handle well higher-dimensional tasks with 

complex cost functions [6], [25]. For the 

scope of this work, we only consider the 

low-dimensional task without considering 

robust and stochastic MPC or transfer and 

meta-learning. The main contribution of 

this work is the quantitative and 

comprehensive comparison of the well-

known DRL algorithm, DDPG, and an 

MPC that is based on the popular IPO 

method. We consider the effect of the MPC 

prediction horizon, the generalization issue 

of DRL, the case of no modeling errors, 

and the cases of modeling errors that 

include the control delay, disturbances, and 

testing with the HFM. To our best 

knowledge, there is no such comparison 

existing in the literature. We hope that 

such a comprehensive comparison will 

serve as a useful reference for researchers 

working on optimal control. 

LITERATURE REVIEW There are only 

a limited number of papers in the literature 

that compare reinforcement learning and 

MPC performances. In [26], the authors 

compared reinforcement learning and 

MPC in controlling non-linear electrical 

power oscillation damping. With a random 

tree as the policy, the reinforcement 

learning is not DRL. With a low-

dimensional deterministic model of the 

system, the authors considered no 

modeling errors. The results show that 

with different parameter settings, the 

reinforcement learning solutions could be 

worse or better than MPCs with regard to 

the cumulative discounted cost. The 

authors also showed data that indicates that 

reinforcement learning is at least 10 times 

faster than MPC during testing. In [27], the 

authors compared DRL and receding-

horizon control (same as MPC) in 

controlling a team of unmanned aerial 

vehicles to maximize wild fire coverage. 
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The authors used a stochastic model of 

wild fire propagation that adds randomness 

(disturbances) to the control. The DRL 

environment state is high-dimensional 

since it includes both images and 

continuous states, indicating a hybrid-input 

DRL control. The results show that DRL 

outperformed receding-horizon control by 

a moderate margin regarding cumulative 

reward. In [25], the authors compared 

integrated MPC-DRL and pure MPC 

controllers for control of high-dimensional 

tasks such as 3D humanoid standing up 

from the ground and in-hand manipulation 

by a five-fingered robotic hand. The 

integrated MPC-DRL controller is 

essentially a MPC controller wherein the 

MPC terminal cost is learned via DRL. 

The training and testing were based on an 

accurate model without considering 

modeling errors. The authors found that 

the integrated MPCDRL controller 

achieved higher rewards than a pure MPC 

controller by a moderate margin. In [28], 

the authors compared DRL and MPC for 

merging into dense traffic. The DRL and 

MPC methods do not share the same cost 

function. Specifically, DRL has a complex 

cost function including absolute-value and 

linear costs while MPC has a quadratic 

cost function. Thus, the authors did not 

compare the episode costs of DRL and 

MPC. However, the authors found that the 

DRL-trained policy significantly 

outperformed MPC regarding the rate of 

merging success. In summary, there is a 

lack of literature on comparing DRL and 

MPC in a fair manner, especially in the 

presence of modeling errors. Our motive 

originates from solving a traditional 

optimal control problem that can be 

represented by state-space equations. In 

our work, most conditions are set to be the 

same for DRL and MPC for fair 

comparison. The HFM of Prius enables us 

to study the effect of practicallyexisting 

modeling errors on the control 

performances of DRL and MPC. These 

characteristics make our work different 

from the existing literature. There is also 

limited literature on ACC car-following 

control using DRL. In [29], the authors 

used a single-layer (non-deep) neural net 

as the reinforcement learning policy 

representation to train an ACC controller. 

In [30], [31], naturalistic driving data was 

used to train human-like car-following 

policies using DRL. In our previous work, 

we trained an ACC optimal control policy 

with a state-space car-following model 

using DRL for the first time [14]. Our 

previous work is the base for the DRL 

controller development in this paper. 

However, the car-following model in this 
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paper considers a constant time headway 

instead of a constant distance headway in 

the previous work. The constant time 

headway enables the vehicle to 

proportionally adjust the desired inter-

vehicular distance based on its speed, 

which is more appropriate in real-world 

driving. There is a large body of literature 

on ACC using MPC [11], [15], [32], [33]. 

In such research papers, the 

modelpredictive ACC systems were 

designed with multi-objective cost 

functions to minimize the tracking error, 

energy consumption, vehicle jerk, and etc. 

A first-order system was usually 

considered to be sufficient to approximate 

the acceleration command dynamics of the 

vehicle [34], [35]. The first-order 

approximation is due to the imperfect 

estimation of vehicle parameters, lower-

level control of acceleration and brake 

pedals’ positions, unmodeled powertrain 

dynamics, and external disturbances [33]. 

Our ACC problem formulation described 

in the following section is similar to that 

from the modelpredictive ACC papers 

EXISTING SYSTEM 

In existing system, Support Vector 

Machines (SVM), decision tree classifier, 

random forest regression, and neural 

network [10]. Even though there are many 

algorithms to choose, only specific 

algorithms are suitable to make certain 

predictions. In this paper, a machine 

learning algorithm is applied to predict a 

met material Thermal  parameters,  

DISADVANTAGES 

 Doesn’t Efficient for handling 

large volume of data. 

 Theoretical Limits 

 Incorrect Classification Results. 

 Less Prediction Accuracy. 

PROPOSED SYSTEM 

The proposed model is introduced to 

overcome all the disadvantages that arises 

in the existing system. This system will 

increase the accuracy of the classification 

results by classifying the data based on the 

Smart Grid  prediction dataset and others 

using LSTM   algorithms.It enhances the 

performance of the overall classification 

results. 

ADVANTAGES 

• High performance. 

• Provide accurate prediction results. 

• It avoid sparsity problems. 

• Reduces the information Loss and 

the bias of the inference due to the 

multiple estimates. 

IMPLEMENTATION 
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MODULES 

 Data Selection and Loading 

 Data Preprocessing 

 Splitting Dataset into Train and 

Test Data 

 Classification 

 Prediction 

 Result Generation 

MODULES DESCRIPTION  

DATA SELECTION AND LOADING 

 Data selection is the process of 

determining the 

appropriate data type and source, as 

well as suitable instruments to 

collect data. 

  Data selection precedes the actual 

practice of data collection and it is 

the process where data relevant to 

the analysis is decided and 

retrieved from the data collection. 

 In this project, the Smart Grid   

dataset 

 

DATA PREPROCESSING 

 The data can have many irrelevant 

and missing parts. To handle this 

part, data cleaning is done. It 

involves handling of missing data, 

noisy data etc. 

 Missing Data:  

This situation arises when some 

data is missing in the data. It can be 

handled in various ways. 

 Ignore the tuples:  

This approach is 

suitable only when 

the dataset we have 

is quite large and 

multiple values are 

missing within a 

tuple. 

 Fill the Missing 

values:  

There are various 

ways to do this task. 

You can choose to 

fill the missing 

values manually, by 

attribute mean or the 

most probable 

value. 

 Encoding Categorical data: That 

categorical data is defined as 

variables with a finite set of label 

values. That most machine learning 

algorithms require numerical input 

and output variables. That an 

integer and one hot encoding is 

used to convert categorical data to 

integer data. 
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 Count Vectorizer: Scikit-learn's 

CountVectorizer is used to convert 

a collection of text documents to a 

vector of term/token counts. It also 

enables the pre-processing of text 

data prior to generating the vector 

representation. This functionality 

makes it a highly flexible feature 

representation module for text. 

SPLITTING DATASET INTO TRAIN AND TEST 

DATA 

 Data splitting is the act of 

partitioning available data into two 

portions, usually for cross-validator 

purposes.   

 One Portion of the data is used to 

develop a predictive model and the 

other to evaluate the model's 

performance. 

 Separating data into training and 

testing sets is an important part of 

evaluating data mining models.  

 Typically, when you separate a 

data set into a training set and 

testing set, most of the data is used 

for training, and a smaller portion 

of the data is used for testing.  

 To train any machine learning 

model irrespective what type of 

dataset is being used you have to 

split the dataset into training data 

and testing data. 

CLASSIFICATION 

Classification is the problem of identifying 

to which of a set of categories, a new 

observation belongs to, on the basis of a 

training set of data containing observations 

and whose categories membership is 

known. 

Random forests or random decision 

forests are an ensemble learning method 

for classification, regression and other 

tasks that operate by constructing a 

multitude of decision trees at training time 

and outputting the class that is the mode of 

the classes (classification) or mean/average 

prediction (regression) of the individual 

trees. 

 

Decision Trees are a type of Supervised 

Machine Learning (that is 

you explain what the input is and what the 

corresponding output is in the training 

data) where the data is continuously split 

according to a certain parameter. 

An example of a decision tree can 

be explained using above binary tree. 

 

The SVM is one of the most powerful 

methods in machine learning algorithms. It 

can find a balance between model 

https://en.wikipedia.org/wiki/Ensemble_learning
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Mode_(statistics)
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complexity and classification ability given 

limited sample information. Compared to 

other machine learning methods, the SVM 

has many advantages in that it can 

overcome the effects of noise and work 

without any prior knowledge. The SVM is 

a non-probabilistic binary linear classifier 

that predicts an input to one of two classes 

for each given input. It optimizes the linear 

analysis and classification of hyperplane 

formation techniques. 

 

The NN algorithm is mainly used for 

classification and regression in machine 

learning. To determine the category of an 

unknown sample, all training samples are 

used as representative points, the distances 

between the unknown sample and all 

training sample points are calculated, and 

the NN is used. The category is the sole 

basis for determining the unknown sample 

category. Because the NN algorithm is 

particularly sensitive to noise data, the K-

nearest neighbour algorithm (KNN) is 

introduced. The main concept of the KNN 

is that when the data and tags in the 

training set are known, the test data are 

input, the characteristics of the test data are 

compared with the features corresponding 

to the training set, and the most similar K 

in the training set is found. 

PREDICTION 

Predictive analytics algorithms try to 

achieve the lowest error possible by either 

using ―boosting‖ or ―bagging‖. 

Accuracy − Accuracy of classifier refers 

to the ability of classifier. It predict the 

class label correctly and the accuracy of 

the predictor refers to how well a given 

predictor can guess the value of predicted 

attribute for a new data. 

Speed − Refers to the computational cost 

in generating and using the classifier or 

predictor. 

Robustness − It refers to the ability of 

classifier or predictor to make correct 

predictions from given noisy data. 

Scalability − Scalability refers to the 

ability to construct the classifier or 

predictor efficiently; given large amount 

of data. 

Interpretability − It refers to what extent 

the classifier or predictor understands. 

RESULT GENERATION 

The Final Result will get generated based 

on the overall classification and prediction. 

The performance of this proposed 

approach is evaluated using some 

measures like, 

 Accuracy 
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Accuracy of classifier 

refers to the ability of 

classifier. It predicts the 

class label correctly and 

the accuracy of the 

predictor refers to how 

well a given predictor 

can guess the value of 

predicted attribute for a 

new data. 

 A

C= 
     

           
 

 Precision 

       Precision is defined as 

the number of true positives 

divided by the number of 

true positives plus the 

number of false positives. 

 Pre

cision=
  

     
 

 Recall 

           Recall is the number 

of correct results divided by 

the number of results that 

should have been returned.  

In binary 

classification, recall is called 

sensitivity. It can be viewed 

as the probability that a 

relevant document is 

retrieved by the query. 

 ROC 

            ROC curves are 

frequently used to show in a 

graphical way the 

connection/trade-off 

between clinical sensitivity 

and specificity for every 

possible cut-off for a test or 

a combination of tests. In 

addition the area under the 

ROC curve gives an idea 

about the benefit of using the 

test(s) in question.  

 Confusion matrix 

                            A  

confusion  matrix is  a  

table   that  is often  used   

to  describe  the   

performance    of    a   

classification     model  (or 

"classifier")   on    a    set    

of    test   data    for    which    

the  true    values     are    

known.    The    confusion    

matrix    itself    is relatively    

simple    to    understand,    

but    the    related    

terminology    can    be    

confusing. 

CONCLUSION AND FUTURE 

WORK 
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 The aim of this paper was to 

evaluate different control 

strategies for thermal energy 

management in buildings.   Three 

cutting-edge solutions, model 

predictive control and deep 

reinforcement learning with 

offline and online 806 training 

were tested and analyzed on a 

simple case study system and 

bench- 807 marked against a 

classical rule-based control 

approach. The objective of the 

controllers was to satisfy the 

cooling demand of a small office 

building while minimizing the 

cost of electricity drawn from the 

grid to operate the chiller, 810 

making the best use of a thermal 

energy storage tank. The 

controllers could manage the 

amount of energy charged and 

discharged to/from a cold water 

storage by adjusting the water 

mass flow rate circulated to it. 

MPC is a  model-based solution 

that employs a  simplified  model 

of the controlled system to 

perform an optimization process 

over a receding horizon, 

 using predictions of external 

disturbances.  Similarly,  DRL 

employs predic-  tions of external 

disturbances to learn a near-

optimal control policy.  How-  

ever, despite the model-free 

nature of the control algorithm, as 

this control   approach requires a 

certain amount of time to 

converge to an acceptable solu-  

tion, a common approach consists 

in pre-training the DRL agent 

offline with  a simulated model of 

the controlled system, losing the 

intrinsic model-free nature of the 

algorithm. Conversely, a DRL 

controller directly deployed in the 

controlled environment learning 

the control policy online may 

achieve a sub-optimal 

performance in the first period of 

deployment, as shown in this 

study, but can converge to a near-

optimal strategy in an acceptable 

amount of time (in the order of a 

few weeks as shown in the 

results). This approach, 

differently from 827 the DRL 

with offline training, is model-

free in the entire deployment 

process. These considerations 

open several research questions 

on the development of DRL 

algorithms.  If DRL control 
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strategies are implemented with 

offline 830 training, they require a 

model of the system, removing 

this theoretical ad-  vantage in 

comparison to an MPC approach. 

DRL has the advantage of not 

relying on a numerical 

optimization process which 

generally requires linearized 

models and and a convex problem 

834 to be formalized. This also 

leads to lower computational 

times compared to  an MPC 

approach. On the other hand, 

MPC demonstrated to be a more  

robust and stable control 

approach.  The flexibility shown 

by DRL agents is  associated with 

the possibility of temporary poor 

control performance. This is 

particularly evident when 

employing a DRL agent trained 

online, but this represents 

nevertheless a promising truly 

model-free approach. The DRL 

agent trained online presented in 

this study proved to be able  to 

improve its control performance 

over time, approaching the 

behaviour of   a near-optimal 

MPC strategy or the similar one 

of a DRL pre-trained offline.  

However, the possibility to really 

deploy such a controller in a plug-

and-play fashion is still to be 

assessed, as the hyperparameters 

and reward function,  which play 

a key role in determining the 

performance of this category of 

con- troller, can require different 

setting depending on the system 

on which they are implemented. 

Future work is therefore expected 

to cover the following aspects: 

 •   Continuing the 

development of online-trained 

DRL approaches, by iden- tifying 

optimal hyperparamenters and 

reward function configurations 

that guarantee a fast convergence 

to a stable control policy, and by 

 including domain expertise to 

guide the initial exploration 

phase. 

 • Exploring the implications 

of implementing such advanced 

control strate gies on more 

complex case studies, 

benchmarking and critically dis-

cussing the performance of 

different control approaches. 
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 • Analyzing the capability of 

DRL and MPC control 

approaches to adapt to changing 

environments without the need of 

external support from a 

technician. • Implementing a 

similar benchmarking approach of 

these control approaches on a 

experimental setup, providing a 

more realistic evaluation required 

for an industrial implementation. 
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