
 

 

 



ISSN2454-9940 

www.ijsem.org 
                                            Vol 14, Issuse . 3  July  2023 

 

INTEGRATING BENCHMARK NUMERICAL MODEL AND PCNN 

NETWORK FOR CIVIL ENGINEERING STRUCTURAL DAMAGE 

IDENTIFICATION 
1
Mohd Khadeer, 

2
Dendukuri Vijaya 

 

Abstract: Ensuring the safety and service life of civil engineering projects greatly depends 

on improving the real-time and precise identification of civil structures. Consequently, the 

project intends to use deep learning techniques to enhance the availability, safety, and 

integrity of building structures while decreasing the occurrence of civil structural accidents in 

buildings. This research combines the Benchmark numerical model with a parallel 

Convolutional neural network that can detect structural deterioration based on both one- and 

two-dimensional features. In order to guarantee some coverage of damage feature recognition 

content, this network topology can efficiently use two parallel branches to extract response 

characteristics at various scales and temporal domains. Furthermore, the Benchmark 

numerical model is able to enhance the visualization of identification in civil structure 

simulations. Results from the fusion algorithm model testing demonstrate that the network 

structure can successfully extract features from damage signals, with a minimum 

classification loss value approaching 0.01. As compared to other comparative algorithms, the 

maximum damage indicators on connecting beams, frame beams, and shear walls reached 

0.472, 0.117, and 0.055, respectively. When it comes to structural joint deterioration, the 

fusion algorithm performs admirably with an identification accuracy of more than 85%. In 

civil engineering projects, this fusion algorithm can give new ideas and opportunities for 

relevant researchers to explore, as well as reference value and relevance for developing 

structural inspection and related risk avoidance plans. 
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INTRODUCTION 

Machine learning's ability to learn and 

understand data without human logic 

makes it a potent tool for evaluating 

statistical and mathematical models. As 

processing power has increased and more 

sensors have been widely used, the amount 

of data and information gathered by 

humans has been growing exponentially. 

Data content analysis and associated 

feature extraction have so entered popular 

consciousness and the academic sphere. 

Two types of structural damage 

identification exist, based on the 

differences in their detection goals: broad 

detection and local detection. The related 

modal parameters in the structural domain 

will change when a mechanical system is 

damaged [1]. In civil engineering 

constructions, dam-age identification is 

obviously significant and important. In 

civil engineering, the safety and 

dependability of structures are of utmost 

importance. If there is any kind of damage 

or defect to a structure, it could collapse. 

Correctly identifying and evaluating the 

damage condition is crucial for ensuring 

the safe operation and longer service life 

of structures. Damage to civil engineering 

structures can cause loss of property and 

human lives. Identifying structures allows 

for early damage detection and repair 

activities, which in turn decreases 

maintenance and replacement costs and 

ensures the safety of the structure. In  
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addition, damage detection can aid in 

the evaluation and detection of civil 

engineering structures, which can aid in 

the optimization of current structural 

resources, the enhancement of fund 

utilization efficiency, and the attainment of 

maximum economic benefits. In civil 

engineering, detecting structural 

deterioration is critical for ensuring the 

reliability and sustainability of engineering 

structures. This will provide the field with 

the scientific groundwork and technical 

support it needs to thrive. The relationship 

between structural conditions and civil 

engineering works is infamously difficult 

to explain due to the inherent complexity 

of environmental components and 

common detection data. 

 

I. RELATED WORKS 

The structural parameters of damaged 

buildings provide proof of damage, and 

identifying the strengthening system is an 

essential part of detecting structural health. 

In order to assess structural variables, 

Zhang [4] looked at shear-type structures. 

In addition, he analyzed the structures 

using frequency domain response 

construction. In addition to more 

accurately reflecting the structure's 

dynamic responsiveness, the suggested 

non-iterative approach reduces the number 

of mistake results and the amount of time 

consumed. By combining the K-means 

clustering method with the Simulated 

annealing approach, Ding et al. [5] created 

a structural damage identification tool. In 

order to detect structural damage using 

modal data, this function was employed. 

Because the initial finite element modeling 

attempts to detect structural deterioration 

introduced error and noise, this method 

was selected as a replacement. This 

method has less of an impact on structural 

damage detection, and it is also 

generalizable and long-lasting. Better still, 

it has a lower sensitivity to background 

noise in data. Combining a transfer 

function with a sequential Extreme 

learning machine is the technique 

suggested by Sun et al. [6] to detect impact 

damage to composite materials. It is 

possible to identify impact damage using 

this technique. The structure is input into 

the neural network after principal 

component analysis to lessen feature noise. 

The next step is to pinpoint exactly where 

the harm is. If you want to know if the 

building is deteriorating, this method can 

be very accurate. Guo et al. [7] used an 

upgraded particle swarm optimization 

method and wavelet transform to detect 

and assess the level of structural damage, 

and they did performance tests in several 

damage situations.  

This approach not only effectively 

accomplishes structural damage, but it also 

shows robustness, convergence, and 

generally stable performance. The anti-

directness of evidence theory in structural 

health detection leads to evidence 

conflicts. Ding et al. [8] suggested 

integrating the Dempster combination rule 

with knowledge priors as a possible 

solution to this problem. When it comes to 

space frame structures, this approach has a 

history of reliability and provides very 

accurate diagnostics and identifications. 

Fathnejat [9] cholar offered a more precise 

method for investigating damage locations 

and identifying possible structural damage 

by combining a confusion matrix with a 

sensitive evaluation index of modal 

features. Moreover, the GMDH network 

contributed to the evolution of the modal 

feature modifications that enhanced 

damage assessment. Both in terms of the 

Mean squared error value and its ability to 

detect and evaluate structural behavior, 

this method outperforms previous 

methods. Chen [9] evaluates the 

probability of different structural problems 

and performs health monitoring 

identification to guarantee accurate 

structural damage detection. The Whale 

Optimization Algorithm's (WOA) predator 

mechanism is responsible for this. The 

weighted modal data and the needs for 
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flexibility assurance are also considered. 

Not only does this approach provide a 

more efficient tool for structural 

monitoring, but the results of the 

numerical simulation also show how 

accurate this method is in locating 

damages.The amount of damage to civil 

and building structures can be determined 

with the use of an Improved Genetic 

Algorithm (IGA) suggested by Ramezani 

et al. [10].  

The foundation of this algorithm is 

a small set of modes. After we took out the 

algorithm's healthy parts, we added two 

numerical variables—a two-dimensional 

truss structure and a three-dimensional 

structure—to test its recognition 

capabilities. During the whole 

performance testing procedure, a 

cantilever beam model was also used. It is 

possible that these techniques can 

significantly reduce noise mistakes, and 

they can also detect damage quite well. In 

order to detect damage to civil 

constructions, Huang et al. [4] used cuckoo 

search (CS). To mitigate the impact of 

ambient temperature on vibration 

frequency prediction, temperature was 

used as a material quality variable. 

According to the study's findings, the 

algorithm is a powerful instrument for 

detecting temperature changes and 

damage. A new approach to damage 

identification using the inverse finite 

element method was presented by Li et al. 

[5]. This approach relies on markers of 

strain age. Strain sensors are used to 

collect data from building structural 

calculations, which are then 

experimentally verified with both single 

and multiple damage variables. Thanks to 

the enhancements made to the direct 

damage index, which now meets the 

criteria for damage structure identification, 

this method is now highly practical due to 

its increased speed and accuracy. 

II. PROPOSED 

METHODLOGY 

In most cases, the optimizer 

responsible for the loss function in a deep 

learning algorithm will be the one to guide 

the network parameters toward a more 

optimal size selection. To improve the 

model's training performance, the 

traditional optimizer mainly changes the 

orientation and step size. Methods like 

gradient descent, adaptive learning rate, 

and momentum mutual love are common. 

This research led to the development of the 

Adam algorithm, which has the potential 

to adaptively change parameters by taking 

into account the square and mean of past 

gradients.  

 
Figure 1:  Framework of PCNN. 

Valuation of the historical gradient 

squared in Once you've done that, you may 

update the parameters to acquire the 

updated network parameters from all the 

iterations. Using the information provided 

above, one may create a PCNN schematic 

framework diagram; Figure 4 shows the 

results. In order to extract features, PCNN 
makes use of two sub-branches: 1D and 

2D. It supplies the network with time 

series data and time-frequency feature 

maps that depict the response of the 

structure to vibration. Both 120 160 and 1 

1024 are assumed to be input sizes. The 

network advances to the next completely 

linked activity after the initial cycle of 

feature map stretching and fused feature 

vector concatenation; with this structure, 

maximal pooling can reduce network 

parameters. With PCNN's dual channel 

feature extraction advantage, classification 

results can be great. As the network 

iterates, the Adam algorithm's learning rate 

must be configured. Using a single set 

learning rate won't get your algorithm 

model to converge to the best accuracy; 

instead, you need to process the learning 
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rate attenuation using the initial learning 

rate from the beginning of training again. 

To evaluate the model and investigate the 

regularization processing method in two 

cases, the Cross-entropy Loss function is 

employed. Doing so ensures that the 

model's predictions are somewhat near to 

the true value.  

 
FIGURE 2. Schematic diagram of 

PCNN network structure loss process. 

The real distribution of the target is 

stated to be pi(x), but the predicted 

distribution of the model is stated to be 

qi(x). The variables y and y′, 

respectively, are used to indicate the 

actual values of the target and the 

expected values of the target.  It is 

possible to calculate the loss equation 

by taking the square root of the total 

amount of losses in the 1 and 2 

indexes.The weights of the Loss 

function for various occupations are 

represented by the symbols ς and ϑ. 

Fig. 2 provides a schematic 

representation of the PCNN training 

technique, which may be seen here. 

The first thing to do is to choose 

out features. Large-scale kernel 

clusters are utilized in the first two 

convolutional layers in order to obtain 

a greater quantity of time-domain 

input. On the other hand, small-scale 

clusters are utilized in the subsequent 

two layers. There are two functional 

branches that are able to handle multi-

target detection. These branches are 

damage location identification and 

damage degree identification. 

III. RESULTS AND 

DISCUSSION 

Figure 3 (a) demonstrates that after 

20 iterations, the PCNN network 

fusion algorithm's training, testing, and 

validation accuracy all show an 

increasing trend; the first upward trend 

is the fastest, and there is a tiny overall 

fluctuation range. And after forty 

repetitions, the three curves' accuracy 

stabilises, staying above 90% the 

whole time. An average number of 

87.12% indicates that the testing 

accuracy is roughly 80%. 
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FIGURE 3. Loss results of PCNN 

network fusion algorithm. 

The study's suggested model shows little 

inaccuracy in its results since the variation 

curves of training loss values and test loss 

values are smaller than the effective loss 

values. The fusion model appears to have 

good effective accuracy based on the 

results shown above. In terms of its loss 

results, a bigger loss number indicates a 

more significant discrepancy between the 

model's projected and actual outcomes. A 

greater standard deviation indicates that 

the model's predictions are closer to the 

true values. Losses during training and 

testing of algorithms drop precipitously as 

the iteration count rises, as seen in the 

figure. In addition, the model value 

approaches 0.5 after the minimal number 

of iterations surpasses 80, suggesting high 

fitting performance. Next, the PCNN's true 

positive rate for detecting various loss 

nodes was compared using the ROC 

(Receiver Operating Characteristic) 

characteristic curve. 

IV. CONCLSUION 

Damage identification algorithms that 

combine Benchmark and PCNN networks 

are proposed to improve CESDI detection. 

The program will have a higher chance of 

deciphering vibration response signals that 

carry damage information. When 

compared to other algorithms, PCNN 

performs better in terms of loss and error 

in damage classification results. The fusion 

algorithm's performance test and 

application analysis show that PCNN can 

extract signal features under two 

conditions: removing all slant support; and 

loosening the side beam bolts. Specifically, 

compared to 1DCNN's 0.14 reduction to 

0.046 and 2DCNN's 0.11 drop to 0.023, 

the PCNN algorithm's regression loss is 

minor and its classification loss value 

dropped from approximately 0.10 to 0.01. 

After 100 iterations, the mean absolute 

error (MAE) for 2DCNN is 0.55 and for 

1DCNN it reduces to 0.46, while for 

PCNN it approaches 0.40.At peak 

accelerations greater than 0.25, the PCNN 

Benchmark model assigns maximum 

damage indications of 0.472, 0.117, and 

0.055 to connecting beams, frame beams, 

and shear walls, respectively. Both the 
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1DCNN Benchmark (0.468, 0.075, 0.026) 

and the 2DCNN Benchmark (0.456, 0.088, 

0.042) have much lower results. With an 

accuracy of over 85% for identified joint 

damage and superior performance in 

damage-related feature extraction, the 

PCNN fusion technique surpasses 1DCNN 

and 2DCNN. The fusion method has 

shown some promise in identifying civil 

structural damages, but it does have some 

limitations. For example, all of the selected 

model data originate from training data 

simulation, and there is just one scenario 

for investigating operating settings. 

Improving it should be the primary goal of 

future studies. 
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