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ABSTRACT: 

The dopamine D2 receptor (D2R) is involved in 

food reward and compulsive food intake. The 

present study developed a virtual screening (VS) 

method to identify food components, which may 

modulate D2R signalling. In contrast to their 

common applications in drug discovery, VS 

methods are rarely applied for the discovery of 

bioactive food compounds. Here, databases were 

created that exclusively contain substances 

occurring in food and natural sources (about 

13,000 different compounds in total) as the basis 

for combined pharmacophore searching, hit-list 

clustering and molecular docking into D2R 

homology models. From 17 compounds finally 

tested in radioligand assays to determine their 

binding affinities, seven were classified as hits 

(hit rate=41%). Functional properties of the five 

most active compounds were further examined 

in β-arrestin recruitment and cAMP inhibition 

experiments. D2R-promoted G-protein 

activation was observed for hordenine, a 

constituent of barley and beer, with 

approximately identical ligand efficacy as 

dopamine (76%) and a Ki value of 13μM. 

Moreover, hordenine antagonised D2-mediated 

β-arrestin recruitment indicating functional 

selectivity. Application of our databases 

provides new perspectives for the discovery of 

bioactive food constituents using VS methods. 

Based on its presence in beer, we suggest that 

hordenine significantly contributes to mood-

elevating effects of beer. 

 

I. INTRODUCTION 

Homeostatic food intake is regulated mainly by 

the hypothalamus and caudal brainstem by 

integration of various peripheral and central 

signals resulting in an ingestive behaviour which 

counterbalances the energy expenditure1 . 

However, it is also well established that certain 

food stimuli induce hedonic food intake in the 

state of satiety, leading to an overconsumption 

of calories and, thus, eventually to obesity. 

Dopaminergic pathways are heavily involved in 

hedonic food intake by mediating reward, 

motivation and reinforcement2 . Among the five 

dopamine receptor subtypes, in particular the 

dopamine D2 receptor (D2R) seems to be 

involved in food reward and compulsive food 

intake2,3. However, the molecular determinants 

of palatable food inducing non-homeostatic food 

intake are still not fully understood. Mixtures of 

carbohydrates and fat most efficiently induce 

hyperphagia in rats4–6, with a carbohydrate/fat 

ratio of about 45%: 35% having the most 

pronounced effect7 . Although being very 

effective in inducing food intake, 

fat/carbohydrate mixtures have a lower impact 

on brain reward areas compared to palatable 
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food items with the same fat/carbohydrate 

composition7,8. Thus, bioactive food 

components with the potential to modulate 

dopaminergic pathways may be able to change 

the rewarding properties of food. To date, only 

little is known about dopaminergic food 

components. Therefore, the aim of the present 

study was the identification of novel food-

derived D2R ligands. 

For the discovery of novel bioactive food 

components, food extracts or food compounds 

are either selected hypothesis-driven or even 

arbitrary and then tested by bioassays addressing 

the desired physiological effect. Subsequently, 

active food extracts are subjected to activity-

guided fractionation to identify the bioactive 

components9 . This approach, however, is rather 

time-consuming, has a low hit rate and tends to 

overlook promising novel food bioactives. 

Furthermore, only a limited number of food 

components are commercially available for 

testing or easily accessible. Therefore, in silico 

screening methods would be useful for 

prioritising the food compounds to be submitted 

to biological assays. 

Virtual screening (VS) refers to the use of 

computational methods for the knowledge-based 

identification of compounds that exhibit a 

desired biological activity10. In drug-discovery 

research, this technique has been developed as a 

response to stagnating high-throughput 

screening (HTS) hit rates in combination with 

rising costs for HTS assays. Nowadays, VS 

methods are a common complementary 

technique to HTS to analyse large compound 

databases in order to prioritise a set of molecules 

for further experimental testing11–13. However, 

no VS applications in food science have been 

reported in the literature, possibly because of the 

lack of specific food-compound databases, since 

pharmaceutical companies focus on drug-like 

compounds and natural products. In the present 

study, we developed a VS protocol consisting of 

pharmacophore screening, hit-list clustering and 

molecular docking to search for possible D2R-

ligands in a newly assembled database 

containing 13,000 components from foods and 

some other natural sources. The most promising 

compounds were evaluated in biological assays. 

This approach allowed for the first time the 

unbiased identification of novel food bioactives 

by virtual screening of a novel food-compound 

database. 

II. RESULTS AND DISCUSSION 

Molecular properties of FCDB and PhyDB 

compared to other VS databases. 

Our first aim was the generation of an in silico 

3D food-compound database. Besides this 

database (FCDB; 12,579 compounds), which we 

constructed by selecting natural food 

constituents from the Dictionary of Food 

Compounds14, we also generated a small natural 

products database (PhyDB; 987 compounds) 

based on the catalogue from the vendor 

PhytoLab Vestenbergsgreuth, Germany 

(available at 

http://www.phytolab.com/de/phytolab.html). 

The databases are part of the 

Supplementary information. 

For the characterisation of our newly generated 

databases, we calculated molecular property 

distributions for FCDB and PhyDB and for 

samples containing 10,000 randomly selected 

compounds from the UNPD database15, the 

ZINC biogenic compounds subset (ZBC) and 

the ZINC all purchasable subset (ZAP)16. Thus, 

we could compare our databases with 

established freely available VS databases that 

contain natural products (UNPD database and 

ZBC) and drug-like compounds (ZAP). Detailed 
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data are available in the 

Supplementary information, Fig. S1. 

The calculations revealed that the FCDB and 

PhyDB databases are substantially different to a 

typical drug-like library (ZAP). While the 

compounds in drug-like libraries tend to comply 

with Lipinski’s rule-of-five17 resulting in 

Gaussian-like molecular property distributions 

with distinct maxima, the molecules in FCDB, 

PhyDB, and UNPD exhibit very broad 

molecular-property distributions. Hence, the 

compounds in these databases tend to have 

higher structural diversity, which is typical for 

natural compound libraries18. Despite their 

distinct similarity, differences between 

FCDB/PhyDB and UNPD still exist, especially 

in terms of molecular weight. The natural 

product library ZBC turned out rather to possess 

drug-like than natural-product-like properties, 

probably because the authors of ZINC 

(http://zinc.docking.org/subsets/zbc) took their 

information about the natural character of a 

compound from vendor catalogues. The vendors 

often also include synthetic derivatives of 

natural products in their catalogues to make 

them more attractive for medicinal chemists, as 

also observed by Manallack et al.19. In 

summary, it turned out that our generated 

screening databases represent a new type of 

screening library, which is much more similar to 

databases containing natural products than drug-

like compounds. 

Virtual screening process. 

The next goal was the search for nutritive or 

natural D2R-ligands in the generated VS 

databases. D2R is a target of great interest for 

the pharmaceutical industry, for which agonists 

have been developed as drugs for treating 

Parkinson’s disease and antagonists for treating 

schizophrenia20,21. Although no X-ray 

structure of D2R has been published yet, a wide 

variety of ligands has been synthesised that 

facilitates the effective use of ligand-based VS 

methods such as pharmacophore searching11. 

The GPCR Ligand Library22 provides a 

comprehensive collection of known D2R-

ligands compiled from the GLIDA database23. 

However, since the majority of D2R-ligands are 

synthetic in origin, the ligand collections contain 

primarily drug-like compounds, in contrast to 

those contained in FCDB and PhyDB. 

Therefore, the selected VS methods needed to be 

capable of finding VS hits in FCDB and PhyDB 

that are structurally different to the input 

ligands. Therefore, we did not only apply VS 

methods that rely on molecular similarity but 

rather used pharmacophore searching in 

combination with hit-list clustering and 

molecular docking. The overall VS workflow is 

summarised in Fig. 1. 

Pharmacophore modelling. 

By selecting relatively large and structurally 

diverse training sets for both D2R-agonists and -

antagonists, we ensured that the resulting 

pharmacophore models only retain the most 

critical features for binding. The training sets are 

depicted in the Supplementary information, 

Figs S2 and S3. Training sets containing only 

large and structurally similar compounds would 

probably have resulted in very specific 

pharmacophore models with a large number of 

features, which would not be able to find any 

hits in FCDB and PhyDB. Additionally, we did 

not consider excluded volumes in the 

pharmacophore models to avoid obtaining small 

hit lists. 

It is a prerequisite for an alignment of the 

ligands to be a good approximation to their 

binding mode that the template compound for 

the alignment provides an orientation close to its 
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bioactive conformer. In addition to molecular 

docking and subsequent molecular-dynamics 

refinement of the ligand conformers as 

techniques for approaching the bioactive 

conformation, we selected some ligands, namely 

# 21 and # 27 from the agonist training set, 

Fig. S2, and # 32 from the antagonist training 

set, Fig. S3. We used the conformers that are 

stored in the GPCR Ligand Library directly, 

because the conformational space in low-energy 

regions is sparsely occupied for structurally 

restrained ligands. The bioactive conformer has 

been shown to be often located near the global 

minimum24 and a low-energy conformer for a 

restrained ligand can thus be a good 

approximation. The training set ligand 

conformers that possess the maximum similarity 

compared to the template were then determined 

by ParaAlign (see Methods and 

Supplementary information). For each ligand, 

this conformer was extracted and used as input 

for the HipHop25 pharmacophore model 

generation algorithm. Since we generated up to 

25 pharmacophore models per run, the variation 

of the conformer types and the templates that 

were used for ParaAlign resulted in a large 

number of models, which had to be validated 

subsequently. 

 

Figure 1. Schematic representation of the VS 

process from database generation to 

experimental testing. The numbers on the left 

and on the right side represent the number of 

compounds that passed through the respective 

VS step depicted in the centre. Due to 230 

compounds that are present in both FCDB and 

PhyDB, the absolute number of different 

compounds is smaller than the sum of the 

compounds in the two databases. 

The validation process involved large test 

databases compiled from the GPCR Ligand 

Library and GPCR Decoy Database22 in order 

to determine the overall best pharmacophore 

models. We found two very similar 

pharmacophore models with almost identical 

excellent VS performance in model validation 

for the D2R-agonists. Both models contained 

hydrogen-bond donor, aromatic ring and 

positive ionisable features. We therefore decided 

to use only the model that gave a slightly better 

receiver operating characteristic (ROC) curve 

(Fig. 2b). 

A comparison between this D2R-agonist 

pharmacophore model (Fig. 2a) and models 

reported in the literature revealed a high degree 

of similarity. Both Malo et al.26 and Chidester 

et al.27 reported D2R-agonist pharmacophore 

models that also contain hydrogen-bond donor, 

aromatic ring and positive ionisable features 

with similar relative orientations. The only 

difference is an additional hydrophobic feature 

close to the positive ionisable feature present in 

their models. However, since not all our training 

set ligands contain such a feature, we conclude 

that the hydrophobic feature is able to increase 

binding affinity but that it is not critical for 

binding. 

We also obtained two pharmacophore models 

for the D2R-antagonists that exhibited the best 
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VS performance in the validation step (Fig. 3c). 

In contrast to the agonists, these two models did 

not show a high degree of similarity concerning 

shape and features (Fig. 3a,b). While the first 

D2R-antagonist model contained a hydrogen-

bond acceptor, an aromatic ring and a positive 

ionisable feature, the other model possessed a 

hydrophobic feature together with the aromatic 

ring and positive ionisable feature. The relative 

orientation of the features was also different. 

However, this observation is not surprising, 

since our D2R-antagonist training set covered 

ligands with considerably different shapes (e.g. 

ligands # 35 and 39, Fig. S3). Such diverse 

ligands probably adopt different binding modes 

and, hence, it is not surprising that we obtained 

two diverse pharmacophore models. 

The models further resemble a ligand 

classification for pharmacophore model 

generation reported by Klabunde and Evers28. 

They divided their D2R-antagonist training set 

into two different classes and built different 

pharmacophore models from the two subsets. 

Our first D2R-antagonist pharmacophore model 

(Fig. 3a) resembles their class I model, whereas 

our second model (Fig. 3b) shows some 

similarity to their class II model. As our 

validation database contains a substantial 

number of actives from both ligand classes, 

similar VS performance of the pharmacophore 

models was not surprising. The validation 

performance is not as good as for the D2R-

agonist models, probably because, on the one 

hand, either model is recognising class I-like 

actives or class II-like actives better and, on the 

other hand, hydrophobic and hydrogen-bond 

acceptor features are not as selective as a 

hydrogen-bond donor feature. For this study, we 

decided to use both models for database 

searching in FCDB and PhyDB and, 

subsequently, to combine the two hit lists to 

avoid missing any type of antagonist. 

Figure 2. The overall best D2R-agonist 

pharmacophore and its inter-feature distances 

(a), depicted together with its ROC curve that 

results from VS of the test database (b). The 

features are hydrogen bond donor (purple, 

HBD), aromatic ring (orange, R) and positive 

ionisable (red, P). The dashed red line in the 

ROC plot indicates a random selection. 
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Figure 3. The overall best D2R-antagonist 

pharmacophore models and their inter-feature 

distances (a and b) depicted together with the 

corresponding ROC curves that result from VS 

of the test database (c). The features are 

hydrogen bond acceptor (green, HBA), aromatic 

ring (orange, R), positive ionisable (red, P) and 

hydrophobic (blue, H). The dashed red line in 

the ROC plot indicates a random selection. The 

blue curve corresponds to model a) and the 

green curve to model b). 

The 3D database-searching step using the 

selected D2R-agonist pharmacophore model 

selected 1,441 compounds from FCDB and 

PhyDB. In contrast, the two selected D2R-

antagonist pharmacophore models gave a 

combined hit list with 1,866 compounds. Note 

that we treated tautomeric compounds and 

different ionisation states as different database 

entries in this step, which led to a lower number 

of chemically different hit compounds. 

III. METHODS 

Database generation. 

From the 40,000 entries (natural food 

constituents, food contaminants, food additives, 

nutraceuticals) in the Dictionary of Food 

Compounds14 only those molecules were 

selected for FCDB that were reported in the 

literature to occur in food. We excluded 

compounds that were heavier than 750 Da or 

possessed more than two sugar moieties, 

because they are unlikely to be resorbed in the 

gastrointestinal tract. The 

Supplementary information includes further 

details on the database generation procedure. 

Molecular property calculations. 

For comparison of FCDB and PhyDB with other 

established database types, we selected the 

UNPD database15, the ZINC biogenic 

compounds (ZBC), and the ZINC all 

purchasable (ZAP) subset from the ZINC 

database16. From these three databases, we 

extracted a sample of 10,000 random 

compounds each. By contrast, FCDB and 

PhyDB were used in their entirety for the 

calculation of molecular properties. The 

molecular properties (molecular weight, AlogP, 

numbers of rotatable bonds, hydrogen bond 

donors and acceptors) were calculated in 

Discovery Studio 3.1. 

Pharmacophore modeling 

For pharmacophore model generation, we 

selected structurally diverse training sets 

containing 11 D2R-agonists and 12 D2R-

antagonists collected from the GPCR Ligand 

Library22. To obtain low-energy conformers for 

the training set ligands, we generated 

conformational sets with up to 255 conformers 

using the Catalyst BEST conformer generation 

algorithm (once including and once without a 

conformer minimisation step using the 

CHARMm force field implemented in 

Discovery Studio 3.1.) The generated ligand 

conformers were aligned to a template 

compound, which is assumedly present in its 

bioactive conformation.  

To obtain template conformers for the rigid-

body alignment algorithm ParaAlign (detailed 

description of ParaAlign is given in the 

Supplementary information), we submitted each 

training set ligand to a molecular docking step 

into an in-house D2R homology model using 

AutoDock Vina30 followed by molecular 

dynamics refinement of the ligand conformers in 

the receptor-ligand complex using AMBER10 

programme package (University of California). 

The refined docking conformation of each 

training set ligand was subsequently used as 
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template for ParaAlign. Because our training 

sets also contained structurally restrained 

ligands, we additionally used the ligand 

conformers for these compounds that are stored 

in the GPCR Ligand Library directly as 

templates for ParaAlign. Two agonists (# 21 and 

27, Fig. S2) and one antagonist (# 32, Fig. S3) 

underwent this procedure. Using the ParaAlign 

algorithm, we could then determine and extract 

the respective training set conformer for each 

alignment that possessed the highest similarity 

to the template conformer. Subsequently, 

pharmacophore models were generated for those 

training set conformers using the Common 

Feature Pharmacophore (HipHop) algorithm in 

Discovery Studio 3.1. The applied parameters 

are given in the Supplementary information. 

In a validation step consisting of a database 

search with test databases that contain a large 

number (136 agonists, 493 antagonists, and 39 

decoys for each) of chemically diverse ligands 

and suitable corresponding decoys compiled 

from the GPCR Ligand Library and GPCR 

Decoy Database, we evaluated all generated 

pharmacophore models. The overall best D2R-

agonist and -antagonist pharmacophore models 

were extracted for the pharmacophore screening 

in FCDB and PhyDB using the best flexible 3D 

database search in Discovery Studio 3.1. 

 

Hit-list preparation and molecular docking 

The hit lists resulting from the pharmacophore 

searches were merged and duplicate structures 

were removed. In the following, we applied the 

ligand-clustering tool in Discovery Studio 3.1 

using MDL public key fingerprints as clustering 

properties to divide the hit lists into groups of 

structurally similar molecules. Thus, a total 

number of 80 clusters for the D2R-agonist and 

100 clusters for the D2R-antagonist screening 

hits were generated. 

To obtain structurally diverse screening hits for 

the subsequent molecular docking step, we 

picked out single cluster representatives based 

on the pharmacophore-model fit values and on 

visual inspection. For chiral compounds, we 

checked if the configuration generated by 

CORINA corresponded to the natural 

stereoisomer. If this was not the case, we 

produced the natural stereoisomer in ChemDraw 

12.0, converted it to a SMILES string and to a 

3D conformer by CORINA and submitted it to 

the ligand-preparation steps previously applied 

to all database compounds. Ligand conformers 

were generated and mapped to the 

pharmacophore models to check, if a match was 

still present. 

Subsequently, the selected pharmacophore hits 

were docked into an in-house D2R-homology 

model previously used in molecular docking 

studies29 using AutoDock Vina30. We applied a 

search space of 26× 24× 24Å and an 

exhaustiveness value of 32 and obtained up to 

20 conformations of each ligand. For the final 

selection of screening hits to be tested in vitro, 

the resulting protein-ligand complexes were 

subjected to an accurate visual inspection. We 

retained only poses, where the most important 

receptor-ligand interactions such as the 

conserved salt bridge between Asp1143.32 and a 

positively charged moiety were present. After 

checking the final hit lists for commercial 

availability, 17 compounds were purchased. The 

VS hit hordenine was further docked into a 

D2R-homology model used in molecular-

dynamics studies with the endogenous ligand 

dopamine42. The docking procedure is 

described in detail in the 

Supporting information. 
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VS hit compounds 

Ajmalicine, delphinidine chloride, 

dihydroberberine, emetine dihydrochloride, 

hordenine, leonurine, and muscimol were 

purchased from PhytoLab GmbH 

(Vestenbergsgreuth, Germany). Clenbuterol 

hydrochloride, fenpropimorph, halofuginone 

hydrobromide, robenidine hydrochloride, and 

sarafloxacin hydrochloride hydrate were 

obtained from Sigma Aldrich (Taufkirchen, 

Germany). Fumigaclavine A was purchased 

from AdipoGen AG (Liestal, Switzerland), and 

kukoamine A from AChemTek, Inc. (Worcester, 

MA, USA). Pyrraline was provided by 

PolyPeptide Group (Strasbourg, France). 

Roquefortine C was obtained from Cfm Oskar 

Tropitzsch GmbH (Marktredwitz, Germany) and 

salsolinol hydrochloride from ABCAM 

biochemical (Cambridge, U.K.). 

Radioligand binding assays 

Receptor binding studies were carried out as 

described previously43,44. In brief, preparations 

of membranes from CHO cells that stably 

express the human D2L receptor were used 

together with [3 H]spiperone (specific activity 

73Ci/mmol, Biotrend, Cologne, Germany) at a 

final concentration of 0.15nM. The assays were 

carried out at a protein concentration of 

6μg/assay tube, showing KD values of 0.052– 

0.10nM and corresponding Bmax values of 950–

1500 fmol/mg. 

CAMP Inhibition assay 

HEK293T cells were transiently co-transfected 

with pcDNA3L-His-CAMYEL45 (purchased 

from ATCC, Manassas, VA via LGC Standards, 

Wesel, Germany) and D2s receptor, 

respectively, and the assay was performed 

according to literature46. Twenty-four hours 

after transfection cells were split into white half-

area 96-well plates at 2× 105 cells/well and 

grown overnight in a phenol-red free medium 

supplemented with serum (Invitrogen, 

Darmstadt, Germany). On the day of 

measurement, the medium was removed and 

replaced by phosphate buffered saline (PBS). 

The cells were serum-starved for 1h before 

treatment. The assay was started by adding 10μL 

of coelenterazine-h (Promega, Mannheim, 

Germany) to each well to yield a final 

concentration of 5μM. After 5min of incubation, 

test compounds were added in PBS containing 

forskolin at a final concentration of 10μM. After 

an incubation time of 15min, BRET 

measurement was performed with a 

CLARIOstar plate reader (BMG LabTech, 

Ortenberg, Germany). Emission signals from 

Renilla luciferase and YFP were measured 

simultaneously using a BRET1 filter set (475–

30nm/535–30nm). BRET ratios (emission at 

535± 30nm/emission at 475± 30nm) were 

calculated and dose-response curves were fitted 

by nonlinear regression analysis using the 

algorithm of PRISM 6.0. Curves were 

normalised to basal BRET ratio obtained from 

dPBS (0%) and the maximum effect of the 

reference ligand quinpirole (100%). 

IV. DATA ANALYSIS 

The resulting competition curves of the receptor 

binding experiments were analysed by nonlinear 

regression using the algorithms in PRISM 6.0 

(GraphPad Software, San Diego, CA). The data 

were initially fit using a sigmoid model to 

provide an IC50 value, representing the 

concentration corresponding to 50% of maximal 

inhibition. IC50 values were transformed to Ki 

values according to the equation of Cheng and 

Prusoff48. 

Data from cAMP measurements were analysed 

by normalising the BRET ratios with 0% for the 
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unstimulated receptor and 100% for the full 

effect of the reference ligand quinpirole. Dose-

response curves were calculated by nonlinear 

regression using the algorithms of PRISM 6.0. 

The amount of recruitment of β-arrestin was 

derived from the agonist-induced increase of 

chemiluminescence, which was expressed in 

counts per second (cps). Dose-response curves 

were normalised to basal cps stimulated by 

buffer (=0%) and the effect of the maximum 

effect of the reference compound quinpirole 

(=100%). 

From each curve, a set of mean values was 

derived and pooled to result in an average curve 

showing the EC50 and Emax value, 

respectively. 
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