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Abstract: 
 
The ability to identify malware is crucial to the 

safety of internet-connected computers. Dynamic 

malware analysis makes advantage of these 

smashups of characteristics. APIs, summary data, 

dynamic link libraries, and modified registry keys 

all contribute to the many permutations that 

might be produced. For accurate and flexible 

dynamic malware analysis, researchers turn to the 

Cuckoo sandbox. Using PEFILE, we can extract 

over 2300 features from dynamic malware 

analysis and another 92 features statically from 

binary malware. Statistics are gleaned from 39000 

malicious binaries and 10000 benign files. Cuckoo 

Sandbox dynamically analyzes 800 benign files 

and 2200 malicious files, extracting 2300 

characteristics. Static malware analysis is 99.36% 

accurate whereas dynamic malware analysis only 

has a 94.64% success rate. Malwares are 

becoming more sophisticated, rendering dynamic 

malware analysis ineffective. Some restrictions on 

network activity mean that even with extensive 

dynamic analysis, we can't get the whole picture. 

 

I. INTRODUCTION  
Malicious software, or "malware" for short, is any 

program designed specifically to do damage. 

Malware's goal is to cause damage to or steal 

information from a computer system by taking 

advantage of flaws in the system's defenses. 

The number of malicious programs is growing 

exponentially, and we can divide them up into several 

classes based on their characteristics and methods of 

operation. Malicious software may take the form of a 

script, an executable binary, or any other kind of 

code. Malware is designed primarily to obtain access 

to a system, to cause a disruption in service, to cause 

a denial of service, to steal information, and to 

destroy data or other resources. Malware is not 

always a flaw in software; sometimes it is hidden 

inside otherwise genuine programs. In many cases, 

legitimate software is really a cover for malicious 

code. A dangerous program might be downloaded 

along with the desired software if you try to 

download it from an entrusted source. Software 

cracks and illegal downloads are common breeding 

grounds for malware. 

Malwares are not only malicious executable codes, 

but also PDF and PHP links that take over the system 

and download even more malware. To install and run 

on a computer system. There is software that may  

Take over a system and yet be considered benign 

since they provide necessary functions. This paper's  

 Goal is to examine executable binaries; 47.80% of 

malware samples on Virus Total are binaries. 

Viruses, Trojan horses, adware, worms, and 

backdoors are just a few examples of malware. We 

often refer to malware that has traits with more than 

one group as "generalized malware" since it defies 

easy categorization. 

Malwares are studied using both static and dynamic 

characteristics. PEFILE can extract over 2300 

features through dynamic analysis and another 92 

features statically from a binary file. The analysis 

employs a wide variety of dynamic feature 

combinations. Registry, dynamic-link libraries 

(DLLs), application programming interfaces (APIs), 

and summary data are four types of dynamic features 

used in malware analysis. To these ever-changing 

permutations of features, machine learning is applied. 

 

II. RELATED WORK  
A. Statistical Evaluation 

Static analysis involves examining the structure of an 

executable file rather than running it in a sandbox. 

Different sections and memory compactness are only 
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two of the numerous static features of the executable 

file. Data Execution Format PEFILE is a python 

library that may be used to parse executables for 

static features. 

Analyses of Change (B) 

Analyzing malware's activity in a live, controlled 

environment is what dynamic analysis is all about. 

Malware, when launched, modifies a registry entry 

for harmful purposes and runs in privileged mode. If 

it switches to privileged mode, it may make sweeping 

modifications to the operating system. In dynamic 

analysis, the program is allowed unrestricted use of 

all available system resources. Software may make 

changes to the registry and execute in debugger mode 

while it is being tested in a controlled environment. 

At the completion of malware execution, the 

environment is reset to the snapshot that was taken at 

the beginning of the process. The controlled 

environment agent records the software's activity. 

Each of the three components—host, guest virtual 

machine, and agent—make up the controlled 

environment known as the Cuckoo Sandbox. Because 

of its logging capabilities, Cuckoo is used in this 

work for dynamic malware investigation. Activities 

performed on the sample file were recorded by the 

sandbox agent. As soon as they detect a virtual 

machine in the system, certain malwares are so 

sophisticated that they switch from malicious to 

benign behavior. Agent, debugging mode, and virtual 

machine detection are the three means by which 

malware may establish its presence in a sandbox. 

Malware was investigated by Clemens Kolb itch at el 

[1] in a sandbox to extract dynamic system calls. The 

executable file (.exe) is categorized as malicious or 

safe based on the system calls it makes. Malware 

often hides its true nature when subjected to dynamic 

analysis. The structure of executable code was 

supplied by David at el [2], who also extracted six 

crucial static properties. They distinguished 

malicious files from safe ones based on those six 

characteristics. Compile time, file info, alignment of 

sections, image size, file alignment, and header size 

are the six most crucial aspects. To identify novel PE 

malware, Wang at el [3] suggested an SVM-based 

malware detection approach. PE characteristics are 

retrieved through structural static analysis, and then 

used to train the SVM classifier. The PE file is 

categorized as harmful or safe based on the malware 

SVM's training data. 

By concentrating on two dynamic features—function 

call monitoring and information flow tracking—

Wabash Amman 2014 [4] presented dynamic 

malware analysis. Katarina Chumachenkp [5] used 

Machine Learning to evaluate and categorize 

malware based on API Calls and API response codes. 

We analyzed and categorized Malware from 9 

distinct families. Millions of characteristics were 

extracted from malware using Cuckoo Sandbox, and 

it took between two and three hours for the system to 

load and process the data. A static and dynamic 

integrated technique was employed for malware 

detection by Igor Santos at el. Malware detection was 

improved because to the integrated methodology. 

When looking for malware, they employed a 

combination of dynamic traces and occurrences of 

static characteristics. 

Bojan Kolosnjaji at el [7] used Deep Neural Network 

to assess the virus, which is superior to traditional 

machine learning techniques since it offers the 

highest accuracy in categorization tasks like NLP and 

MV. Both a convolutional and a recurrent network 

layer served as the foundation for this neural 

network. An innovative approach was developed by 

Mammon Alatza at el [8], which uses the frequency 

with which APIs are used to accurately and 

efficiently identify and categorize zero-day threats. 

They employed a number of data mining algorithms, 

and outlined numerous techniques for collecting 

features from enormous datasets. They were able to 

compare and contrast the merits of different data 

mining methods by analyzing their respective 

performance metrics. Mr. C. Mohammed at No. 9. 

Using Machine learning and Data mining, they built a 

comprehensive framework for identifying and 

categorizing malware to safeguard critical 

information from harmful actors. They analyzed both 

anomaly and signature based characteristics to 

develop an approach that is both powerful and 

efficient for malware detection and classification. 

In [10], A. Kumar of el does a static and dynamic 

analysis of the malware. As a result of combining 

static and dynamic analysis, the accuracy of malware 

detection was improved via the use of machine 

learning. 

III. STATIC AND DYNAMIC 

MALWARE ANALYSIS  
A. Evolving 

The Cuckoo sandbox dynamically analyzes malware 

and extracts its behaviors in real time. Our primary 

goal in using a sandbox is to separate our live system 

from the testing environment and to have access to 

the data we need from malware activity. 

A summary of the malware execution may be seen in 

the cuckoo report. Each of the report's many chapters 

http://www.ijasem.org/


    www.ijasem.org  

       Vol 18, Issue 1, 2024 

 

   ISSN2454-9940 

 

 

 
 
 
 
 

741 
 

focuses on a different topic. Cuckoo Sandbox report 

features include the following: 

Information Summaries Files API Execution Call 

Registry Keys Internet Protocol Addresses Domain 

Name System Queries Access URLs Registry Keys, 

Part 1 

The registry stores settings and configuration data for 

the operating system and applications. Registry key 

stores information and configurations in a tree-like 

structure. It is possible to write to, delete from, open, 

and read from the registry, among other actions, in 

the Cuckoo sandbox. Because malware alters several 

registers to circumvent the protection of window and 

firewall, registry data may be utilized to identify 

malware quite successfully. If the registry is modified 

several times, it is more likely that the executable file 

is malicious. Malicious and safe files are analyzed for 

any feature that modifies or deletes the registry. 

Make the item 1 if any file shares the same registry 

changes; else, it should be 0. Figure 1 depicts the 

registry matrix.

 

One example of a registry representation in feature 

data is shown in Figure 1. 

2) Files 

Information concerning new files, updated files, 

deleted files, and failed file counts may all be seen in 

the Cuckoo sandbox report. It is possible to identify 

lockers and ransom ware by monitoring the 

production and change of files. When looking for 

lockers and ransom ware, the file feature is the most 

important. Instead of utilizing each and every file as a 

feature, we utilize the features related to the number 

of times each file was accessed, edited, and deleted. 

Figure 2: Matrix of Files. 

 

In this report, the file's attributes are shown in Figure 

2. Son 

Due of their high readability, file data are presented 

in the summary section. 

Execution-Time API Calls a) A collection of 

subroutine or function calls used for communicating 

between two software components or between 

software and hardware components is known as an 

API (Application Programming Interface). APIs may 

be based on the operating system, the web, hardware, 

or a software library. During the execution of a 

binary file, Cuckoo's sandbox will keep track of any 

API calls made, providing a summary of those calls 

along with the corresponding return codes. Figure 3 

displays the API success and failure matrix.

 

APIs Called during Sample Execution, Third 

Diagram in Cuckoo's Reports, and a special 

collection of API calls is recorded. The API call 

count in son format is sent together with the API's 

return code. Status of APIs is indicated by their 
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return codes; a return code of 0 indicates a successful 

API execution, whereas a non-zero value indicates an 

API failure. 

Thirdly, Domain Name System (DNS) and Internet 

Protocol Security (IPS) requests The pap file created 

by Cuckoo's sandbox may be analyzed to learn more 

about the network activity that Malware initiated 

while it was running. This activity includes IP 

addresses and DNS requests. Various programs, such 

as Silk, can parse pap files and retrieve IP addresses 

and DNS requests. Most malware is designed to 

make several connections and do many DNS 

lookups. In the execution summary, characteristics 

such as the total number of DNS queries and the total 

number of IP addresses reached per sample are 

retrieved. Everything from the number of times the 

registry was modified, deleted, accessed, opened, and 

generated to the total number of file modifications is 

recorded in the summary data. Information such as 

the total number of IP addresses and visited URLs is 

also included. 

The Integration of Multiple Features 

Malware analysis makes use of a wide variety of 

dynamic feature combinations. Registry, Dynamic 

Link Libraries, Application Programming Interfaces, 

and Summaries are examples of dynamic features. 

Table 1 lists the many permutations of dynamic 

analysis. 

TABLE I. DYNAMIC FEATURES 

COMBINATIONS 

 

Part B: Static Analysis 

Without actually running the executable file, static 

analysis may extract its static properties using the 

python PEFILE library. It gathers information from 

the document's "header," "optional header," and other 

sections Microsoft Windows executables and 

Dynamic Link Libraries (DLLs) employ a file format 

called Portable Executable (PE). When loaded into a 

window, DLLs contain details about how to link and 

execute programs. It is also utilized to examine the 

libraries that were imported and the linking methods 

that were used in the running of the executable. 

A PE file has a header and different sections. The 

header also includes groups for things like DOS, PE, 

optional features, and a table of contents. 

Sections include options like Code, Imports, and 

Data. Figure 4 depicts the basic layout of a PE file.

 

File Extension (PE) and Section 1) File Header 

(Figure 4) 

The 9 retrieved characteristics from the file header 

provide important information about the PE file. 

Second, a potential header, if desired. The optional 

header and sections provide a total of 4characteristics 

for PE analysis. Three Parts PE file analysis makes 

use of derived features, such as 

SectionsMeanEntropy, SectionsMinEntropy, 

SectionsMaxEntropy, and Characteristics Mean, 

Characteristics in, Characteristics ax, Miscreant, 

Miscuing, Micmac, and Num Suspicious Sections. 

. Dos Header 

Dos Header is mined for a total of 17 properties, 17 

of which are fundamental and 2 of which are derived. 

E res2 and e res length are the derived features. 

The TimeDateStamp, NumberOfNamedEntries, and 

NumberOfIdEntries characteristics are taken from the 

Directory Entry Resources Configuration. 

Adjusting the Loading of Directory Entries (Section  
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Twenty fundamental properties are gleaned from the 

Directory using the Directory Entry Load setting for 

PE file analysis. 

Crucial Characteristics Static features such as 

Machine, Characteristics, Number of Sections, 

TimeDateStamp,PointerToSymbolTable, 

NumberOfSymbols, Magic, MajorLinkerVersion, 

MinorLinkerVersion,SizeOfCode,SizeOfInitializedD

ata, SizeOfUninitializedData, Checksum, 

BaseOfCode, Image Base, MajorSubsystemVersion, 

Subsystem, DllCharacteristics, SizeOfStackReserve, 

Major 

 

IV. RESULTS  
Insights that Change Over Time 

The Registry, APIs, DLLs, and summaries have all 

been subjected to various machine learning 

approaches for real-time analysis. TABLE II displays 

the outcomes of a dynamic malware analysis. Figure 

5 displays the ROC curve for space-constrained 

dynamic analysis using the Gradient Boosting 

Algorithm...  

 

TABLE II DYNAMIC RESULTS 

 

 

5. Gradient Boosting ROC Graph 

In TALBE III, we see the outcomes of several 

dynamic feature combinations. 

The results of combining the dynamic features are 

shown in Table III.

 

 

B. Outcomes from Non-Moving Features 

Machine learning is used to more than 92 static 

characteristics retrieved from executable files. 

TABLE IV displays the outcomes of the static 

characteristics analysis. Figure 6 illustrates the ROC 

Curve generated by the gradient Boosting technique. 
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TABLE IV. STATIC FEATURES RESULTS 

 

 

Figure 6. Static ROC graph using Gradient Boosting 

Classifier  

 

V. CONCLUSION  

 
Intelligent malware behaviors reduce the efficacy of 

dynamic malware analysis. Limitations on dynamic 

analysis are introduced by the fact that restricted 

network access prevents the examination of free-

flowing network activity. Malware is notoriously 

difficult to analyze in a controlled setting, since its 

presence may be readily detected even in virtualized 

or debugging mode. Since the virtual system leaves 

behind easily-detectable traces, it is not as efficient as 

the genuine thing. This devious virus uses application 

programming interfaces (APIs) to identify a 

virtualized host. The IsDebuggerPresent and 

GetAdapterAddress APIs may tell whether a machine 

is running in a virtualized setting. Malware may 

access processes in progress and look for Agent.pyw, 

a python agent for the cuckoo sandbox. 

Static malware analysis is superior to dynamic 

analysis with an AUC (Area under Curve) of 99.36%. 

Because malware often comes in compressed forms, 

static analysis has various restrictions. 
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