

 www.ijasem.org

 Vol 18, Issue 1, 2024

 ISSN2454-9940

739

Analyzing Malware in Both Static and Dynamic

Environments using Machine Learning

Mohammad Abdul Waheed Farooqui 1,Konaparthi Chandrakalavathi 2, Kammara Uma Naga Sree 3,

Associate Professor 1,2,UG Students3,

Department of CSE

BRILLIANT GRAMMAR SCHOOL EDUCATIONAL SOCIETY'S GROUP OF INSTITUTIONS-INTEGRATED

CAMPUS Abdullapurmet (V), Hayath Nagar (M), R.R.Dt. Hyderabad.

Abstract:

The ability to identify malware is crucial to the

safety of internet-connected computers. Dynamic

malware analysis makes advantage of these

smashups of characteristics. APIs, summary data,

dynamic link libraries, and modified registry keys

all contribute to the many permutations that

might be produced. For accurate and flexible

dynamic malware analysis, researchers turn to the

Cuckoo sandbox. Using PEFILE, we can extract

over 2300 features from dynamic malware

analysis and another 92 features statically from

binary malware. Statistics are gleaned from 39000

malicious binaries and 10000 benign files. Cuckoo

Sandbox dynamically analyzes 800 benign files

and 2200 malicious files, extracting 2300

characteristics. Static malware analysis is 99.36%

accurate whereas dynamic malware analysis only

has a 94.64% success rate. Malwares are

becoming more sophisticated, rendering dynamic

malware analysis ineffective. Some restrictions on

network activity mean that even with extensive

dynamic analysis, we can't get the whole picture.

I. INTRODUCTION
Malicious software, or "malware" for short, is any

program designed specifically to do damage.

Malware's goal is to cause damage to or steal

information from a computer system by taking

advantage of flaws in the system's defenses.

The number of malicious programs is growing

exponentially, and we can divide them up into several

classes based on their characteristics and methods of

operation. Malicious software may take the form of a

script, an executable binary, or any other kind of

code. Malware is designed primarily to obtain access

to a system, to cause a disruption in service, to cause

a denial of service, to steal information, and to

destroy data or other resources. Malware is not

always a flaw in software; sometimes it is hidden

inside otherwise genuine programs. In many cases,

legitimate software is really a cover for malicious

code. A dangerous program might be downloaded

along with the desired software if you try to

download it from an entrusted source. Software

cracks and illegal downloads are common breeding

grounds for malware.

Malwares are not only malicious executable codes,

but also PDF and PHP links that take over the system

and download even more malware. To install and run

on a computer system. There is software that may

Take over a system and yet be considered benign

since they provide necessary functions. This paper's

 Goal is to examine executable binaries; 47.80% of

malware samples on Virus Total are binaries.

Viruses, Trojan horses, adware, worms, and

backdoors are just a few examples of malware. We

often refer to malware that has traits with more than

one group as "generalized malware" since it defies

easy categorization.

Malwares are studied using both static and dynamic

characteristics. PEFILE can extract over 2300

features through dynamic analysis and another 92

features statically from a binary file. The analysis

employs a wide variety of dynamic feature

combinations. Registry, dynamic-link libraries

(DLLs), application programming interfaces (APIs),

and summary data are four types of dynamic features

used in malware analysis. To these ever-changing

permutations of features, machine learning is applied.

II. RELATED WORK
A. Statistical Evaluation

Static analysis involves examining the structure of an

executable file rather than running it in a sandbox.

Different sections and memory compactness are only

http://www.ijasem.org/

 www.ijasem.org

 Vol 18, Issue 1, 2024

 ISSN2454-9940

740

two of the numerous static features of the executable

file. Data Execution Format PEFILE is a python

library that may be used to parse executables for

static features.

Analyses of Change (B)

Analyzing malware's activity in a live, controlled

environment is what dynamic analysis is all about.

Malware, when launched, modifies a registry entry

for harmful purposes and runs in privileged mode. If

it switches to privileged mode, it may make sweeping

modifications to the operating system. In dynamic

analysis, the program is allowed unrestricted use of

all available system resources. Software may make

changes to the registry and execute in debugger mode

while it is being tested in a controlled environment.

At the completion of malware execution, the

environment is reset to the snapshot that was taken at

the beginning of the process. The controlled

environment agent records the software's activity.

Each of the three components—host, guest virtual

machine, and agent—make up the controlled

environment known as the Cuckoo Sandbox. Because

of its logging capabilities, Cuckoo is used in this

work for dynamic malware investigation. Activities

performed on the sample file were recorded by the

sandbox agent. As soon as they detect a virtual

machine in the system, certain malwares are so

sophisticated that they switch from malicious to

benign behavior. Agent, debugging mode, and virtual

machine detection are the three means by which

malware may establish its presence in a sandbox.

Malware was investigated by Clemens Kolb itch at el

[1] in a sandbox to extract dynamic system calls. The

executable file (.exe) is categorized as malicious or

safe based on the system calls it makes. Malware

often hides its true nature when subjected to dynamic

analysis. The structure of executable code was

supplied by David at el [2], who also extracted six

crucial static properties. They distinguished

malicious files from safe ones based on those six

characteristics. Compile time, file info, alignment of

sections, image size, file alignment, and header size

are the six most crucial aspects. To identify novel PE

malware, Wang at el [3] suggested an SVM-based

malware detection approach. PE characteristics are

retrieved through structural static analysis, and then

used to train the SVM classifier. The PE file is

categorized as harmful or safe based on the malware

SVM's training data.

By concentrating on two dynamic features—function

call monitoring and information flow tracking—

Wabash Amman 2014 [4] presented dynamic

malware analysis. Katarina Chumachenkp [5] used

Machine Learning to evaluate and categorize

malware based on API Calls and API response codes.

We analyzed and categorized Malware from 9

distinct families. Millions of characteristics were

extracted from malware using Cuckoo Sandbox, and

it took between two and three hours for the system to

load and process the data. A static and dynamic

integrated technique was employed for malware

detection by Igor Santos at el. Malware detection was

improved because to the integrated methodology.

When looking for malware, they employed a

combination of dynamic traces and occurrences of

static characteristics.

Bojan Kolosnjaji at el [7] used Deep Neural Network

to assess the virus, which is superior to traditional

machine learning techniques since it offers the

highest accuracy in categorization tasks like NLP and

MV. Both a convolutional and a recurrent network

layer served as the foundation for this neural

network. An innovative approach was developed by

Mammon Alatza at el [8], which uses the frequency

with which APIs are used to accurately and

efficiently identify and categorize zero-day threats.

They employed a number of data mining algorithms,

and outlined numerous techniques for collecting

features from enormous datasets. They were able to

compare and contrast the merits of different data

mining methods by analyzing their respective

performance metrics. Mr. C. Mohammed at No. 9.

Using Machine learning and Data mining, they built a

comprehensive framework for identifying and

categorizing malware to safeguard critical

information from harmful actors. They analyzed both

anomaly and signature based characteristics to

develop an approach that is both powerful and

efficient for malware detection and classification.

In [10], A. Kumar of el does a static and dynamic

analysis of the malware. As a result of combining

static and dynamic analysis, the accuracy of malware

detection was improved via the use of machine

learning.

III. STATIC AND DYNAMIC

MALWARE ANALYSIS
A. Evolving

The Cuckoo sandbox dynamically analyzes malware

and extracts its behaviors in real time. Our primary

goal in using a sandbox is to separate our live system

from the testing environment and to have access to

the data we need from malware activity.

A summary of the malware execution may be seen in

the cuckoo report. Each of the report's many chapters

http://www.ijasem.org/

 www.ijasem.org

 Vol 18, Issue 1, 2024

 ISSN2454-9940

741

focuses on a different topic. Cuckoo Sandbox report

features include the following:

Information Summaries Files API Execution Call

Registry Keys Internet Protocol Addresses Domain

Name System Queries Access URLs Registry Keys,

Part 1

The registry stores settings and configuration data for

the operating system and applications. Registry key

stores information and configurations in a tree-like

structure. It is possible to write to, delete from, open,

and read from the registry, among other actions, in

the Cuckoo sandbox. Because malware alters several

registers to circumvent the protection of window and

firewall, registry data may be utilized to identify

malware quite successfully. If the registry is modified

several times, it is more likely that the executable file

is malicious. Malicious and safe files are analyzed for

any feature that modifies or deletes the registry.

Make the item 1 if any file shares the same registry

changes; else, it should be 0. Figure 1 depicts the

registry matrix.

One example of a registry representation in feature

data is shown in Figure 1.

2) Files

Information concerning new files, updated files,

deleted files, and failed file counts may all be seen in

the Cuckoo sandbox report. It is possible to identify

lockers and ransom ware by monitoring the

production and change of files. When looking for

lockers and ransom ware, the file feature is the most

important. Instead of utilizing each and every file as a

feature, we utilize the features related to the number

of times each file was accessed, edited, and deleted.

Figure 2: Matrix of Files.

In this report, the file's attributes are shown in Figure

2. Son

Due of their high readability, file data are presented

in the summary section.

Execution-Time API Calls a) A collection of

subroutine or function calls used for communicating

between two software components or between

software and hardware components is known as an

API (Application Programming Interface). APIs may

be based on the operating system, the web, hardware,

or a software library. During the execution of a

binary file, Cuckoo's sandbox will keep track of any

API calls made, providing a summary of those calls

along with the corresponding return codes. Figure 3

displays the API success and failure matrix.

APIs Called during Sample Execution, Third

Diagram in Cuckoo's Reports, and a special

collection of API calls is recorded. The API call

count in son format is sent together with the API's

return code. Status of APIs is indicated by their

http://www.ijasem.org/

 www.ijasem.org

 Vol 18, Issue 1, 2024

 ISSN2454-9940

742

return codes; a return code of 0 indicates a successful

API execution, whereas a non-zero value indicates an

API failure.

Thirdly, Domain Name System (DNS) and Internet

Protocol Security (IPS) requests The pap file created

by Cuckoo's sandbox may be analyzed to learn more

about the network activity that Malware initiated

while it was running. This activity includes IP

addresses and DNS requests. Various programs, such

as Silk, can parse pap files and retrieve IP addresses

and DNS requests. Most malware is designed to

make several connections and do many DNS

lookups. In the execution summary, characteristics

such as the total number of DNS queries and the total

number of IP addresses reached per sample are

retrieved. Everything from the number of times the

registry was modified, deleted, accessed, opened, and

generated to the total number of file modifications is

recorded in the summary data. Information such as

the total number of IP addresses and visited URLs is

also included.

The Integration of Multiple Features

Malware analysis makes use of a wide variety of

dynamic feature combinations. Registry, Dynamic

Link Libraries, Application Programming Interfaces,

and Summaries are examples of dynamic features.

Table 1 lists the many permutations of dynamic

analysis.

TABLE I. DYNAMIC FEATURES

COMBINATIONS

Part B: Static Analysis

Without actually running the executable file, static

analysis may extract its static properties using the

python PEFILE library. It gathers information from

the document's "header," "optional header," and other

sections Microsoft Windows executables and

Dynamic Link Libraries (DLLs) employ a file format

called Portable Executable (PE). When loaded into a

window, DLLs contain details about how to link and

execute programs. It is also utilized to examine the

libraries that were imported and the linking methods

that were used in the running of the executable.

A PE file has a header and different sections. The

header also includes groups for things like DOS, PE,

optional features, and a table of contents.

Sections include options like Code, Imports, and

Data. Figure 4 depicts the basic layout of a PE file.

File Extension (PE) and Section 1) File Header

(Figure 4)

The 9 retrieved characteristics from the file header

provide important information about the PE file.

Second, a potential header, if desired. The optional

header and sections provide a total of 4characteristics

for PE analysis. Three Parts PE file analysis makes

use of derived features, such as

SectionsMeanEntropy, SectionsMinEntropy,

SectionsMaxEntropy, and Characteristics Mean,

Characteristics in, Characteristics ax, Miscreant,

Miscuing, Micmac, and Num Suspicious Sections.

. Dos Header

Dos Header is mined for a total of 17 properties, 17

of which are fundamental and 2 of which are derived.

E res2 and e res length are the derived features.

The TimeDateStamp, NumberOfNamedEntries, and

NumberOfIdEntries characteristics are taken from the

Directory Entry Resources Configuration.

Adjusting the Loading of Directory Entries (Section

http://www.ijasem.org/

 www.ijasem.org

 Vol 18, Issue 1, 2024

 ISSN2454-9940

743

Twenty fundamental properties are gleaned from the

Directory using the Directory Entry Load setting for

PE file analysis.

Crucial Characteristics Static features such as

Machine, Characteristics, Number of Sections,

TimeDateStamp,PointerToSymbolTable,

NumberOfSymbols, Magic, MajorLinkerVersion,

MinorLinkerVersion,SizeOfCode,SizeOfInitializedD

ata, SizeOfUninitializedData, Checksum,

BaseOfCode, Image Base, MajorSubsystemVersion,

Subsystem, DllCharacteristics, SizeOfStackReserve,

Major

IV. RESULTS
Insights that Change Over Time

The Registry, APIs, DLLs, and summaries have all

been subjected to various machine learning

approaches for real-time analysis. TABLE II displays

the outcomes of a dynamic malware analysis. Figure

5 displays the ROC curve for space-constrained

dynamic analysis using the Gradient Boosting

Algorithm...

TABLE II DYNAMIC RESULTS

5. Gradient Boosting ROC Graph

In TALBE III, we see the outcomes of several

dynamic feature combinations.

The results of combining the dynamic features are

shown in Table III.

B. Outcomes from Non-Moving Features

Machine learning is used to more than 92 static

characteristics retrieved from executable files.

TABLE IV displays the outcomes of the static

characteristics analysis. Figure 6 illustrates the ROC

Curve generated by the gradient Boosting technique.

http://www.ijasem.org/

 www.ijasem.org

 Vol 18, Issue 1, 2024

 ISSN2454-9940

744

TABLE IV. STATIC FEATURES RESULTS

Figure 6. Static ROC graph using Gradient Boosting

Classifier

V. CONCLUSION

Intelligent malware behaviors reduce the efficacy of

dynamic malware analysis. Limitations on dynamic

analysis are introduced by the fact that restricted

network access prevents the examination of free-

flowing network activity. Malware is notoriously

difficult to analyze in a controlled setting, since its

presence may be readily detected even in virtualized

or debugging mode. Since the virtual system leaves

behind easily-detectable traces, it is not as efficient as

the genuine thing. This devious virus uses application

programming interfaces (APIs) to identify a

virtualized host. The IsDebuggerPresent and

GetAdapterAddress APIs may tell whether a machine

is running in a virtualized setting. Malware may

access processes in progress and look for Agent.pyw,

a python agent for the cuckoo sandbox.

Static malware analysis is superior to dynamic

analysis with an AUC (Area under Curve) of 99.36%.

Because malware often comes in compressed forms,

static analysis has various restrictions.

REFERENCES

[1] Kolbitsch, C., Comparetti, P. M., Krueger, C.,

Kilda, E., Zhou, X. Y., & Wang, X. (2009, August).

Effective and Efficient Malware Detection at the End

Host. In USENIX security symposium (Vol. 4, No. 1,

pp. 351-366).

[2] David, B., Filial, E., & Galliano, K. (2017).

Structural analysis of binary executable headers for

malware detection optimization. Journal of Computer

Virology and Hacking Techniques, 13(2), 87-93.

[3] Wang, T. Y., Wu, C. H., & Hsieh, C. C. (2009,

August). Detecting unknown malicious executables

using portable executable headers. In INC, IMS and

IDC, 2009. NCM'09. Fifth International Joint

Conference on (pp. 278-284). IEEE.

[4] Amman, W. (2014). A framework for analysis

and comparison of dynamic malware analysis tools.

Arrive preprint arXiv: 1410.2131.

[5] Chumachenko, K. (2017). Machine Learning

Methods for Malware Detection and Classification.

http://www.ijasem.org/

 www.ijasem.org

 Vol 18, Issue 1, 2024

 ISSN2454-9940

745

[6] Santos, I., Devesa, J., Brezo, F., Nieves, J., &

Bringas, P. G. (2013). Opem: A static-dynamic

approach for machine-learning-based malware

detection. In International Joint Conference

CISIS’12-ICEUTE 12-SOCO 12 Special Sessions

(pp. 271-280). Springer, Berlin, Heidelberg.

[7] Kolosnjaji, B., Zarras, A., Webster, G., & Eckert,

C. (2016, December). Deep learning for classification

of malware system call sequences. In Australasian

Joint Conference on Artificial Intelligence (pp. 137-

149). Springer, Cham.

[8] Alatza, M., Venkatraman, S., Watters, P., &

Alatza, M. (2011, December). Zero-day malware

detection based on supervised learning algorithms of

API call signatures. In Proceedings of the Ninth

Australasian Data Mining Conference-Volume

121(pp. 171-182). Australian Computer Society, Inc.

[9] Chowdhury, M., Raman, A., & Islam, R. (2017,

June). Malware analysis and detection using data

mining and machine learning classification. In

International Conference on Applications and

Techniques in Cyber Security and Intelligence (pp.

266-274).

Edition Della Normal, Cham.

[10] Jain, A., & Singh, A. K. (2017, August).

Integrated Malware

Analysis using machine learning. In 2017 2nd

International

Conference on Telecommunication and Networks

(TEL-NET) (pp. 1-

8). IEEE.

http://www.ijasem.org/

