

 ISSN2454-9940

 Vol 18, Issue 2, 2024

 www.ijasem.org

1102

MACHINE LEARNING FOR WEB VULNERABILITY

DETECTION

Mr. GOLLAPUDI BUCHAIAH CHOWDARY1, Mr. MUTYA SAI SREEKAR2, Ms. TATINENI

JAHNAVI3, Mr. CELVAJI ROHAN RAO4, Ms. BACHHANNAGARI ANKITHA5,

P.SUMANYA6

1,2,3,4,5 UG students, Dept of CSE(CS), Malla Reddy Engineering College

(Autonomous), Secunderabad, Telangana State

6Assistant Professor, Dept of CSE(CS), Malla Reddy Engineering College

(Autonomous), Secunderabad, Telangana State

ABSTRACT

In this project, we propose a

methodology to leverage Machine

Learning (ML) for the detection of web

application vulnerabilities. Web

applications are particularly challenging

to analyses, due to their diversity and the

widespread adoption of custom

programming practices. ML is thus very

helpful for web application security: it

can take advantage of manually labeled

data to bring the human understanding

of the web application semantics into

automated analysis tools. We use our

methodology in the design of Mitch, the

first ML solution for the black-box

detection of Cross-Site Request Forgery

(CSRF) vulnerabilities. Mitch allowed

us to identify 35 new CSRFs on 20

major websites and 3 new CSRFs on

production software.

Keywords: ML, CSRF, widespread, web

application.

INTRODUCTION

Web applications are the most common

interface to security sensitive data and

functionality available nowadays. They

are routinely used to file tax incomes,

access the results of medical screenings,

perform financial transactions, and share

opinions with our circle of friends, just

to mention a few popular use cases. On

the downside, this means that web

applications are appealing targets to

malicious users (attackers) who are

determined to force economic losses,

unduly access confidential data or create

http://www.ijasem.org/

 ISSN2454-9940

 Vol 18, Issue 2, 2024

 www.ijasem.org

1103

embarrassment to their victims. Securing

web applications is well known to be

hard.

There are several reasons for this,

ranging from the heterogeneity and

complexity of the web platform to the

adoption of undisciplined scripting

languages offering dubious security

guarantees and not amenable for static

analysis. In such a setting, black-box

vulnerability detection methods are

particularly popular. As opposed to

white-box techniques which require

access to the web application source

code, black-box methods operate at the

level of HTTP traffic, i.e., HTTP

requests and responses. Though this

limited perspective might miss

important insights, it has the key

advantage of offering a language-

agnostic vulnerability detection

approach, which abstracts from the

complexity of scripting languages and

offers a uniform interface to the widest

possible range of web applications. This

sounds appealing, yet previous work

showed that such an analysis is far from

trivial. One of the main challenges there

is how to expose to automated tools a

critical ingredient of effective

vulnerability detection, i.e., an

understanding of the web application

semantics. Example: Cross-Site Request

Forgery (CSRF) Cross-Site Request

Forgery (CSRF) is a well-known web

attack that forces a user into submitting

unwanted, attacker controlled HTTP

requests towards a vulnerable web

application in which she is currently

authenticated. The key concept of CSRF

is that the malicious requests are routed

to the web application through the user’s

browser, hence they might be

indistinguishable from intended benign

requests which were actually authorized

by the user.

A typical CSRF attack works as

follows:

1) Alice logs into an honest yet

vulnerable web application, e.g., her

preferred social network. Session

authentication is implemented through a

session cookie that is automatically

attached by the browser to any

subsequent request towards the web

application;

2) Alice opens another tab and visits an

unrelated website, e.g., a newspaper

website, which returns a web page

including malicious advertisement;

http://www.ijasem.org/

 ISSN2454-9940

 Vol 18, Issue 2, 2024

 www.ijasem.org

1104

3) The malicious advertisement sends a

cross-site request to the social network

using HTML or JavaScript, e.g., asking

to “like” a given political party.

Since the request includes Alice’s

cookies, it is processed in her

authentication context at the social

network. This way, the malicious

advertisement can force Alice into

putting a “like” to the desired political

party, which might skew the result of

online surveys.

Notice that CSRF does not require the

attacker to intercept or modify user’s

requests and responses: it suffices that

the Preventing CSRF

To prevent CSRF, web developers have

to implement explicit protection

mechanisms. If adding extra user

interaction does not affect usability too

much, it is possible to force re-

authentication or use one-time

passwords / CAPTCHAs to prevent

cross-site requests going through

unnoticed. In many cases, however,

automated prevention is preferred: the

recently introduced SameSite cookie

attribute can be used to prevent cookie

attachment on cross-site requests, which

solves the root cause of CSRF and is

highly recommended for new web

applications. Unfortunately, this defense

is not yet widespread and existing web

applications typically filter out cross-site

request by using any of the following

techniques:

1) checking the value of standard HTTP

request headers such as Referrer and

Origin, indicating the page originating

the request;

2) checking the presence of custom

HTTP request headers like X-

Requested-With, which cannot be set

from a cross-site position;

3) checking the presence of

unpredictable anti-CSRF tokens,set by

the server into sensitive forms.

A recent paper discusses the pros and

cons of these different solutions.

However, all three options suffer from

the same limitation: they require a

careful and fine-grained placement of

security checks. For example, tokens

should be attached to all and only the

security-sensitive HTTP requests, so as

to ensure complete protection without

harming the user experience.

Using a token to protect a “like” button

is useful to prevent the attack discussed

http://www.ijasem.org/

 ISSN2454-9940

 Vol 18, Issue 2, 2024

 www.ijasem.org

1105

above, yet having a token on the social

network homepage is undesirable,

because it might lead to rejecting

legitimate cross-site requests, e.g., from

clicks on the results of a search engine

indexing the social network. In the end,

finding the “optimal” placement of anti-

CSRF defenses is typically a daunting

task for web developers. Modern web

application development frameworks

provide

Automated support for this, yet CSRF

vulnerabilities are still routinely found

even in top-ranked websites. This

motivates the need for effective CSRF

detection tools. But how can we provide

automated tool support for CSRF

detection if we have no mechanized way

to detect which HTTP requests are

actually security-sensitive.are passed -

No splits.

EXISTING SYSTEM

In the existing system Securing web

applications is well known to be hard.

There are several reasons for this,

ranging from the heterogeneity and

complexity of the web platform to the

adoption of undisciplined scripting

languages offering dubious security

guarantees and not amenable for static

analysis. Though this limited perspective

might miss important insights, it has the

key advantage of offering a language-

agnostic vulnerability detection

approach, which abstracts from the

complexity of scripting languages and

offers a uniform interface to the widest

possible range of web applications.

PROPOSED SYSTEM

Cross-Site Request Forgery (CSRF) is a

well-known web attack that forces a user

into submitting unwanted, attacker

controlled HTTP requests towards a

vulnerable web application in which she

is currently authenticated. The key

concept of CSRF is that the malicious

requests are routed to the web

application through the user’s browser,

hence they might be indistinguishable

from intended benign requests which

were actually authorized by the user.

The CSRF does not require the attacker

to intercept or modify user’s requests

and responses: it suffices that the victim

visits the attacker’s website, from which

the attack is launched. Thus, CSRF

vulnerabilities are exploitable by any

malicious website on the Web.

http://www.ijasem.org/

 ISSN2454-9940

 Vol 18, Issue 2, 2024

 www.ijasem.org

1106

MODULES DESCRIPTION

User:

The User can register the first. While

registering he required a valid user email

and mobile for further communications.

Once the user register then admin can

activate the customer. Once admin

activated the customer then user can

login into our system. User can do the

data preprocess. First required running

website name. By using that website the

user can test the csrfs. By help of bolt

tool the user can fetch related all csrfs

and generated algorithm names. The

result will be stored in json files. Later

the user can get the results of Mitch

dataset. The mitch dataset tested for

POST method as well GET method to.

The result will be displayed on the

browser.

Admin:

Admin can login with his credentials.

Once he login he can activate the users.

The activated user only login in our

applications. The admin can set the

training and testing data for the project

of the Mitch Dataset. The user search all

urls related csrf token admin can view in

his page. The admin can also check the

POST method performed data from the

dataset and GET method related data

also.

False Positives and False Negatives:

Mitch produces a false positive when it

returns a candidate CSRF that cannot be

actually exploited. This is something

relatively easy to detect by manual

testing, though this process is tedious

and time-consuming. In general, it is not

possible to reliably identify when Mitch

produces a false negative, because this

would require to know all the CSRF

vulnerabilities on the tested websites. To

estimate this important aspect, we keep

track of all the sensitive requests

returned by the ML classifier embedded

into Mitch and we focus our manual

testing on those cases. This is a

reasonable choice to make the analysis

tractable, because we first showed that

the classifier performs well using

standard validity measures.

Machine Learning Classifier:

The ML classifier used by Mitch

was trained from a dataset of around

6000 HTTP requests from existing

websites, collected and labeled by two

human experts. The feature space X of

the classifier has 49 dimensions, each

one capturing a specific property of

http://www.ijasem.org/

 ISSN2454-9940

 Vol 18, Issue 2, 2024

 www.ijasem.org

1107

HTTP requests. Those can be organized

into following categories.

following set of numerical features:

numOfParams: the total number of

parameters;

numOfBools: the number of request

parameters bound to a boolean value;

numOfIds: the number of request

parameters bound to an identifier, i.e., a

hexadecimal string, whose usage was

empirically observed to be common in

our dataset;

numOfBlobs: the number of request

parameters bound to a blob, i.e., any

string which is not an identifier;

reqLen: the total number of characters in

the request, including parameter names

and values.

Home page:

User Registration Form

User Login Form:

User Home:

Getting website csrfs:

Scanning urls:

http://www.ijasem.org/

 ISSN2454-9940

 Vol 18, Issue 2, 2024

 www.ijasem.org

1108

CSRF token:

Given website csrf results

MD5 Token

Mitch Detected sites:

Machine Learning Results:

Admin Login:

CONCLUSION

Web applications are particularly

challenging to analyse, due to their

diversity and the widespread adoption of

custom programming practices. ML is

thus very helpful in the web setting,

because it can take advantage of

manually labeled data to expose the

human understanding of the web

application semantics to automated

http://www.ijasem.org/

 ISSN2454-9940

 Vol 18, Issue 2, 2024

 www.ijasem.org

1109

analysis tools. We validated this claim

by designing Mitch, the first ML

solution for the blackbox detection of

CSRF vulnerabilities, and by

experimentally assessing its

effectiveness. We hope other researchers

might take advantage of our

methodology for the detection of other

classes of web application

vulnerabilities.

REFERANCES

[1] Stefano Calzavara, Riccardo Focardi,

Marco Squarcina, and Mauro Tempesta.

Surviving the web: A journey into web

session security. ACM Comput. Surv.,

50(1):13:1–13:34, 2017.

[2] Avinash Sudhodanan, Roberto

Carbone, Luca Compagna, Nicolas

Dolgin, Alessandro Armando, and

Umberto Morelli. Large-scale analysis

& detection of authentication cross-site

request forgeries. In 2017 IEEE

European Symposium on Security and

Privacy, EuroS&P 2017, Paris, France,

April 26-28, 2017, pages 350–365,

2017.

[3] Stefano Calzavara, Alvise Rabitti,

Alessio Ragazzo, and Michele Bugliesi.

Testing for integrity flaws in web

sessions. In Computer Security - 24rd

European Symposium on Research in

Computer Security, ESORICS 2019,

Luxembourg, Luxembourg, September

23-27, 2019, pages 606–624, 2019.

[4] OWASP. OWASP Testing Guide.

https://www.owasp.org/index.php/

OWASP Testing Guide v4 Table of

Contents, 2016.

[5] Jason Bau, Elie Bursztein, Divij

Gupta, and John C. Mitchell. State of the

art: Automated black-box web

application vulnerability testing. In 31st

IEEE Symposium on Security and

Privacy, S&P 2010, 16-19 May 2010,

Berkeley/Oakland, California, USA,

pages 332–345, 2010.

[6] Adam Doup´e, Marco Cova, and

Giovanni Vigna. Why johnny can’t

pentest: An analysis of black-box web

vulnerability scanners. In Detection of

Intrusions and Malware, and

Vulnerability Assessment, 7th

International Conference, DIMVA 2010,

Bonn, Germany, July 8-9, 2010.

Proceedings, pages 111–131, 2010.

[7] Adam Barth, Collin Jackson, and

John C. Mitchell. Robust defenses for

cross-site request forgery. In

Proceedings of the 2008 ACM

Conference on Computer and

Communications Security, CCS 2008,

http://www.ijasem.org/

 ISSN2454-9940

 Vol 18, Issue 2, 2024

 www.ijasem.org

1110

Alexandria, Virginia, USA, October 27-

31, 2008, pages 75–88, 2008.

[8] Mehryar Mohri, Afshin

Rostamizadeh, and Ameet Talwalkar.

Foundations of Machine Learning. The

MIT Press, 2012.

[9] Michael W. Kattan, Dennis A.

Adams, and Michael S. Parks. A

comparison of machine learning with

human judgment. Journal of

Management Information Systems,

9(4):37–57, March 1993.

[10] D. A. Ferrucci. Introduction to

“This is Watson”. IBM Journal of

Research and Development, 56(3):235–

249, May 2012.

http://www.ijasem.org/

