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ABSTRACT 

When training for hazardous operations, 

real-time stress detection is an asset for 

optimizing task performance and reducing 

stress. Stress detection systems train a 

machine-learning model with physiological 

signals to classify stress levels of unseen 

data. Unfortunately, individual differences 

and the time-series nature of physiological 

signals limit the effectiveness of generalized 

models and hinder both post-hoc stress 

detection and real-time monitoring. This 

study evaluated a personalized stress 

detection system that selects a personalized 

subset of features for model training. The 

system was evaluated post-hoc for real-time 

deployment. Further, traditional classifiers 

were assessed for error caused by indirect 

approximations against a benchmark, 

optimal probability classifier (Approximate 

Bayes; ABayes). Healthy participants 

completed a task with three levels of 

stressors (low, medium, high), either a 

complex task in virtual reality (responding 

to spaceflight emergency fires, n =27) or a 

simple laboratory-based task (N-back, n 

=14). Heart rate, blood pressure, 

electrodermal activity, and respiration were 

assessed. Personalized features and window 

sizes were compared. Classification 

performance was compared for ABayes, 

support vector machine, decision tree, and 

random forest. The results demonstrate that 

a personalized model with time series 

intervals can classify three stress levels with 

higher accuracy than a generalized model. 

However, cross-validation and holdout 

performance varied for traditional classifiers 

vs. ABayes, suggesting error from indirect 

approximations. The selected features 

changed with window size and tasks, but 

found blood pressure was most prominent. 

http://www.ijasem.org/


          ISSN2454-9940 

         www.ijasem.org  

             Vol 18, Issue 2, 2024 
 

 
 

 

 
 
 
 

1873 
 

The capability to account for individual 

difference is an advantage of personalized 

models and will likely have a growing 

presence in future detection systems.  

 

1.INTRODUCTION 

Despite extensive training in responding to 

an emergency, a person’s response to an 

actual emergency can be negatively affected 

by the stressfulness of the situation. Stress 

can result in a cascade of physiological 

changes that may alter. Behavioral patterns, 

situational awareness, decision making, and 

cognitive resources [1].An inability to cope 

with the stress of a high-stress condition 

cande crease task performance and thereby 

risk mission failure, injury, or death [2]. 

Consequently, developing resiliency to this 

situational stress through improved training 

may lead to better outcomes. To that end, 

using real-time monitoring of a person’s 

stress responses to customize the 

stressfulness of training scenarios may, in 

turn, lead to more appropriate handling of 

actual hazardous operation [3], [4].  

 

           Stress detection using machine 

learning has been challenging for several 

reasons. First, there are individual 

differences in the appraisal of, and 

physiological responses to, stressful 

situations. Numerous stress detection 

approaches have attempted to reduce 

technical complexity by generalizing their 

models to a broad population, or the 

‘‘average’’ response [3]. However, the stress 

response to a unique situation is largely 

subjective, and personalized stress detection 

models may be more robust to individual 

differences [5], [6]. 

The second challenge is that the time series 

nature of physiological signals can be 

problematic. The physiological stress 

response has temporal and feature 

correlations. These correlations may violate 

the machine learning assumption that the 

data are independently and identically 

distributed, thereby leading to biased results 

[7].    An additional challenge is interpreting 

how well model estimations match the true 

conditional probabilities of a subject’s stress 

levels. Stress detection models rely on 

traditional machine learning algorithms that 

make data-driven approximations to 

estimate the chance that the individual is 

experiencing a state of stress given their 

physiological responses. However, these 

estimations are often indirect and without a 
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benchmark for comparison. From classical 

statistics research, the Bayes theorem is 

theoretically the optimal solution and a 

classifier given the same parameters as 

Bayes theorem will have the lowest 

probability of error [8]. The Bayes theorem 

uses an empirical density distribution as a 

true prior probability, which can be used to 

calculate the conditional probability of each 

class. The classifier selects the class with the 

greatest posterior probability of occurrence, 

also known as maximum a posteriori. 

Machine-learning algorithms attempt to 

approximate the density distributions. If the 

density estimates of the classifier converge 

to the true densities, then the estimated 

probability represents the true probability of 

occurrence and a classifier that 

approximates Bayes becomes an Optimal  

Bayes classifier. However, these 

approximations can have varying accuracy 

due to assumptions made by the algorithm, 

such as independence of predictors [9]. 

Thus, it can be difficult to interpret the 

model’s logic. Physiological systems are 

known to have a high degree of dependence 

with regard to a stress response, because 

they are often initiated by the same neuro 

endocrine axis [10]. Some researchers have 

shown that classifiers may account for 

dependencies using multivariate kernel 

density estimators [11]. Therefore, it may be 

beneficial to evaluate supervised machine 

learning classifiers against a benchmark 

optimal classifier that approximates Bayes 

using a density distribution estimated 

through multivariate kernel density 

estimation for stress detection. To achieve 

real-time and continuous monitoring of 

stress levels, new approaches are needed to 

analyze time series for physiologically-

based stress detection [12]. Real-time stress 

detection can enable closed-loop automation 

to either modify the training environments to 

better match the trainee’s responses or better 

assess individual stress during staged or real 

operations [13]. In datasets with repeated 

measurements at multiple times that present 

uncertainty from randomness or 

incompleteness, such as multiple measures 

of physiological data, multivariate kernel 

density estimators may help increase 

detection accuracy [11].   To address these 

challenges, the goal of this research is to 

assess the objectivity, reliability, and 

validity of a personalized model 

methodology. The first research question 

focuses on objectivity, and whether the 
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stressor levels can show distinct levels in 

personalized features used for the 

classification model while accounting for 

individual differences in physiology. This 

will provide confidence that the model is 

designed for the appropriate context and that 

the training data reflect distinct ground truth 

levels. The second research question focuses 

on the system’s reliability by evaluating the 

performance of the time-series interval 

approach using a post-hoc model comparing 

between a standard laboratory cognitive task 

and a complex job-specific task, window 

sizes,  classifier validation techniques, and 

features selected for each individual. The 

third research question focuses on the 

validity of the system by seeking to 

understand whether indirect approximations 

influence traditional supervised machine 

learning classifiers compared to a Bayes 

classifier, known as Approximate Bayes (A 

Bayes), which uses direct approximations of 

optimal stress classes through multivariate 

kernel density estimation.   This research is 

part of a larger development effort   to 

design VR training scenarios that can 

dynamically adapt a virtual environment 

using real-time stress detection [14], [15], 

[16]. To answer these research questions 

within the constraints of the larger system, 

the experiment will assess a time-series 

interval approach to stress detection for a 

post-hoc model of physiological response 

data, its accuracy in detecting participant 

stress using a collected during stressful 

tasks, and provide the architecture for a real-

time stress detection system that uses this 

classification methodology. Validating a 

machine learning pipeline post-hoc allows 

for translation to real-time stress detection 

and applications for stress monitoring. 

 

2.LITERATURE SURVEY 

Decision tree classifiers 

 

Decision tree classifiers are used 

successfully in many diverse areas. Their 

most important feature is the capability of 

capturing descriptive decision making 

knowledge from the supplied data. Decision 

tree can be generated from training sets. The 

procedure for such generation based on the 

set of objects (S), each belonging to one of 

the classes C1, C2, …, Ck is as follows: 

 

Step 1.If all the objects in S belong to the 

same class, for example Ci, the decision tree 

for S consists of a  leaf labeled with this 

class 
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Step 2.Otherwise, let T be some test with 

possible outcomes O1, O2,…, On. Each 

object in S has one outcome for T so the test 

partitions S into subsets S1, S2,…Sn where 

each object in Si has outcome Oi for T. T 

becomes the root of the decision tree and for 

each outcome Oi we build a subsidiary 

decision tree by invoking the same 

procedure recursively on the set Si. 

 

Gradient boosting  

Gradient boosting is a machine 

learning technique used 

in regression and classification tasks, among 

others. It gives a prediction model in the 

form of an ensemble of weak prediction 

models, which are typically decision 

trees.[1][2] When a decision tree is the weak 

learner, the resulting algorithm is called 

gradient-boosted trees; it usually 

outperforms random forest.A gradient-

boosted trees model is built in a stage-wise 

fashion as in other boosting methods, but it 

generalizes the other methods by allowing 

optimization of an 

arbitrary differentiable loss function. 

 

K-Nearest Neighbors (KNN) 

➢ Simple, but a very powerful 

classification algorithm 

➢ Classifies based on a similarity 

measure 

➢ Non-parametric  

➢ Lazy learning 

➢ Does not “learn” until the test 

example is given 

➢ Whenever we have a new data to 

classify, we find its K-nearest 

neighbors from the training data 

 

Example 

 

➢ Training dataset consists of k-closest 

examples in feature space 

➢ Feature space means, space with 

categorization variables (non-metric 

variables) 

➢ Learning based on instances, and 

thus also works lazily because 

instance close to the input vector for 

test or prediction may take time to 

occur in the training dataset 

 

Logistic regression Classifiers 

 

Logistic regression analysis studies the 

association between a categorical dependent 

variable and a set of independent 

(explanatory) variables. The name logistic 

regression is used when the dependent 

variable has only two values, such as 0 and 1 

or Yes and No. The name multinomial 

logistic regression is usually reserved for the 

case when the dependent variable has three 
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or more unique values, such as Married, 

Single, Divorced, or Widowed. Although the 

type of data used for the dependent variable 

is different from that of multiple regression, 

the practical use of the procedure is similar. 

 

Logistic regression competes with 

discriminant analysis as a method for 

analyzing categorical-response variables. 

Many statisticians feel that logistic 

regression is more versatile and better suited 

for modeling most situations than is 

discriminant analysis. This is because 

logistic regression does not assume that the 

independent variables are normally 

distributed, as discriminant analysis does. 

 

This program computes binary logistic 

regression and multinomial logistic 

regression on both numeric and categorical 

independent variables. It reports on the 

regression equation as well as the goodness 

of fit, odds ratios, confidence limits, 

likelihood, and deviance. It performs a 

comprehensive residual analysis including 

diagnostic residual reports and plots. It can 

perform an independent variable subset 

selection search, looking for the best 

regression model with the fewest 

independent variables. It provides 

confidence intervals on predicted values and 

provides ROC curves to help determine the 

best cutoff point for classification. It allows 

you to validate your results by automatically 

classifying rows that are not used during the 

analysis. 

 

Naïve Bayes 

 

The naive bayes approach is a supervised 

learning method which is based on a 

simplistic hypothesis: it assumes that the 

presence (or absence) of a particular feature 

of a class is unrelated to the presence (or 

absence) of any other feature . 

Yet, despite this, it appears robust and 

efficient. Its performance is comparable to 

other supervised learning techniques. 

Various reasons have been advanced in the 

literature. In this tutorial, we highlight an 

explanation based on the representation bias. 

The naive bayes classifier is a linear 

classifier, as well as linear discriminant 

analysis, logistic regression or linear SVM 

(support vector machine). The difference 

lies on the method of estimating the 

parameters of the classifier (the learning 

bias). 
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While the Naive Bayes classifier is widely 

used in the research world, it is not 

widespread among practitioners which want 

to obtain usable results. On the one hand, the 

researchers found especially it is very easy 

to program and implement it, its parameters 

are easy to estimate, learning is very fast 

even on very large databases, its accuracy is 

reasonably good in comparison to the other 

approaches. On the other hand, the final 

users do not obtain a model easy to interpret 

and deploy, they does not understand the 

interest of such a technique. 

 

Thus, we introduce in a new presentation of 

the results of the learning process. The 

classifier is easier to understand, and its 

deployment is also made easier. In the first 

part of this tutorial, we present some 

theoretical aspects of the naive bayes 

classifier. Then, we implement the approach 

on a dataset with Tanagra. We compare the 

obtained results (the parameters of the 

model) to those obtained with other linear 

approaches such as the logistic regression, 

the linear discriminant analysis and the 

linear SVM. We note that the results are 

highly consistent. This largely explains the 

good performance of the method in 

comparison to others. In the second part, we 

use various tools on the same dataset (Weka 

3.6.0, R 2.9.2, Knime 2.1.1, Orange 2.0b 

and RapidMiner 4.6.0). We try above all to 

understand the obtained results. 

 

Random Forest  

Random forests or random decision forests 

are an ensemble learning method for 

classification, regression and other tasks that 

operates by constructing a multitude of 

decision trees at training time. For 

classification tasks, the output of the random 

forest is the class selected by most trees. For 

regression tasks, the mean or average 

prediction of the individual trees is returned. 

Random decision forests correct for decision 

trees' habit of overfitting to their training set. 

Random forests generally outperform 

decision trees, but their accuracy is lower 

than gradient boosted trees. However, data 

characteristics can affect their performance. 

The first algorithm for random decision 

forests was created in 1995 by Tin Kam 

Ho[1] using the random subspace method, 

which, in Ho's formulation, is a way to 

implement the "stochastic discrimination" 

approach to classification proposed by 

Eugene Kleinberg.  
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An extension of the algorithm was 

developed by Leo Breiman and Adele 

Cutler, who registered "Random Forests" as 

a trademark in 2006 (as of 2019, owned by 

Minitab, Inc.).The extension combines 

Breiman's "bagging" idea and random 

selection of features, introduced first by 

Ho[1] and later independently by Amit and 

Geman[13] in order to construct a collection 

of decision trees with controlled variance. 

Random forests are frequently used as 

"blackbox" models in businesses, as they 

generate reasonable predictions across a 

wide range of data while requiring little 

configuration. 

SVM  

 

In classification tasks a discriminant 

machine learning technique aims at finding, 

based on an independent and identically 

distributed (iid) training dataset, a 

discriminant function that can correctly 

predict labels fornewly acquired instances. 

Unlike generative machine learning 

approaches, which require computations 

ofconditional probability distributions, a 

discriminant classification function takes a 

data point x and assignsit to one of the 

different classes that are a part of the 

classification task. Less powerful than 

generativeapproaches, which are mostly 

used when prediction involves outlier 

detection, discriminant approachesrequire 

fewer computational resources and less 

training data, especially for a 

multidimensional featurespace and when 

only posterior probabilities are needed. 

From a geometric perspective, learning a 

classifieris equivalent to finding the 

equation for a multidimensional surface that 

best separates the different classesin the 

feature space. 

SVM is a discriminant technique, and, 

because it solves the convex optimization 

problem analytically, it always returns the 

same optimal hyperplane parameter—in 

contrast to genetic algorithms (GAs) or 

perceptrons, both of which are widely used 

for classification in machine learning. For 

perceptrons, solutions  are highly dependent 

on the initialization and termination criteria. 

For a specific kernel that transforms the data 

from the input space to the feature space, 

training returns uniquely defined SVM 

model parameters for a given training set, 

whereas the perceptron and GA classifier 

models are different each time training is 

initialized. The aim of GAs and perceptrons 

is only to minimize error during training, 
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which will translate into several 

hyperplanes’ meeting this requirement. 

3. EXISTING SYSTEM 

The physiological stress response involves 

the interaction between the nervous system 

and the endocrine system that aims to 

maintain physiological integrity under 

changing environmental demands. The time 

course of the physiologic responses to stress 

varies by system and by the intensity 

andduration of the stressor; they are neither 

physiologically independentnor statistically 

orthogonal. After the psychologicalappraisal 

of a stressor, neural ganglia pathways are 

activatedalmost instantaneously to evoke 

very rapid responses via local 

neurotransmitters. For example, 

disinhibition of heartrate via vagal 

withdrawal occurs within milliseconds while 

asympathetically-mediated increase in heart 

occurs after a fewseconds (5-10 s) [10]. 

Sympathetic and sudomotor activity results 

in the opening of eccrine sweat glands on 

handsand feet, which occur about 1-5 

seconds after stimuli [17].On the other hand, 

the physiologic responses due to 

circulatingchemicals take longer to manifest. 

Epinephrine is secretedfrom the adrenal 

medulla and range from milliseconds to 

minutesto exert their cardiovascular effects. 

Whereas, cortisol isinitiated by the adrenal 

cortex 5–10 min after stressor onsetand peak 

between 20 and 30 min [18]. These 

processes canact exclusively or in 

conjunction on target organs to 

potentiate(e.g., memory, muscle activation) 

or attenuate organ function(e.g., digestion, 

reproduction). 

Stress detection, by means of classifying 

these physiological responses into levels of 

stress via machine learning, continues to 

evolve and is motivated by the potential 

utility of continuously monitoring stress 

levels in real-time [12], [21]. Stress 

detection systems have been developed for 

drivers in semi-urban scenarios [22], [23], 

patients undergoing virtual reality therapy 

[24], individuals in working environments 

[25], and people that need help managing 

daily stress [21], [26], [27], [28], [29], [30]. 

Stress detection can also be applied to a 

variety of human-machine interfaces (HMIs) 

which may monitor stress, but also infer the 

cognitive state of the user to adapt system 

functionality [31]. Examples of HMIs that 

may use stress detection include wearable 
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devices, voice recognition systems, eye 

tracking systems, facial expression analysis, 

and brain/body computer interfaces [12], 

[32]. However, these HMIs may not be able 

to accurately detect stress in all individuals, 

and the accuracy of stress detection may 

vary depending on the specific technology 

and approach used [33]. 

These detection systems collect information 

about stress responses from either objective 

physiological sensors or subjective 

psychological metrics, in the form of 

independent variables called features, which 

are then used to classify the stress level. 

Commonly used sensors include 

electrodermal activity (EDA), 

electrocardiogram (ECG), respiration (RSP), 

electroencephalogram (EEG), skin 

temperature (ST), and blood volume pulse 

(BVP) [33]. For an ECG signal, stress 

indices have been primarily inferred from 

changes in the time intervals between 

heartbeats, which measure Heart Rate 

Variability (HRV) using time-domain, 

frequency-domain, or nonlinear analysis. 

HRV metrics have been associated with 

sympathetic and parasympathetic activation. 

However, attempting to detect stress levels 

from signal amplitude alone neglects the 

time series nature of physiological data. 

Physiological systems may be simultaneous 

and coupled (e.g., breathing can modulate 

heart rate), contain both deterministic and 

stochastic components, and may be 

correlated when measured over long periods 

of time [34]. Stress sensor signals  are 

continuous ordered attributes; therefore, 

they are best characterized by features that 

quantify the distribution of data points, 

variation, correlation properties, stationarity, 

entropy, and nonlinear properties [35] 

 

Disadvantages 

• The complexity of data: Most of the 

existing machine learning models must be 

able to accurately interpret large and 

complex datasets to find Stress Detection. 

• Data availability: Most machine learning 

models require large amounts of data to 

create accurate predictions. If data is 

unavailable in sufficient quantities, then 

model accuracy may suffer. 

• Incorrect labeling: The existing machine 

learning models are only as accurate as the 

data trained using the input dataset. If the 

data has been incorrectly labeled, the model 

cannot make accurate predictions. 

Proposed System 
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This paper describes the development of a 

personalized physiological-based stress 

detection system to classify acute stress 

using feature selection on intervals of the 

time-series data. To train the machine 

learning model, participant physiological 

signals were collected for three stressor 

levels during either a spaceflight emergency 

fire procedure on a VR International Space 

Station (VR-ISS) [46], [47] or a well-

validated and less-complex N-back mental 

workload task [48].  

 

Several previous studies have detected stress 

induced by N-back tasks via machine 

learning methods, both alone [48], [50] and 

with another job-specific task [51]. 

Therefore, comparing a jobs pecific VR-ISS 

task to the N-back using the same 

personalized approach is a way to assess the 

system’s reliability can work for multiple 

stress detection tasks. Each participant had 

features selected at different interval 

window sizes, then those personalized 

features trained the classifier model, and 

subsequently tested the classifier’s 

predictive accuracy. Since the stress 

response is complex and often unique, the 

analysis will explore which features are 

selected most for individuals depending on 

window size, and how this changes 

classification 

performance. Classifier performance was 

assessed using both holdout and cross-

validation validation techniques to simulate 

how the model may perform on unseen data 

as an analog for deployment in real-time.  

 

Advantages 

The novelty and contribution of this research 

is to show that stress detection may benefit 

from using personalized time series 

approaches to quantify temporal patterns in 

physiological signals, to assess whether 

traditional classifiers are limited in 

approximating the optimal Bayes solution, 

that  certain features may be better at 

different windows sizes, and that this 

approach has a suitable performance for 

detecting stress for a VR spaceflight 

emergency training procedure 

 

4. OUTPUTSCREENS 
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5. CONCLUSION 

To address the challenges of vast differences 

between individual stress response, the time-

series nature of physiological signals, this 

research evaluated the objectivity, 

reliability, and validity of a real-time stress 

detection system using a personalized time-

series interval approach. The simple and 

complex tasks were able to achieve distinct 

levels of stress enabling their use as machine 

learning ground truth. Analysis of the 

window sizes provided insight into which 

sensors/features were useful for varying 

time-intervals. The personalized model was 

found to have better performance than a 

generalized model. Furthermore, it evaluated 

the effect of indirect approximations by 

supervised machine learning classifiers 

evaluated against a benchmark optimal 

classifier, A Bayes. It was found that 

indirect approximations can have a minor-to 

moderate effect on classifier performance (-

11% to +14% of A Bayes). The current 

findings suggest that a personalized system 

provides promising performance when 

compared to past research on multi-class 

stress detection. Researchers should be 

careful about the selection of HMIs, sensors, 

and features for models, as they may not 

account for inter and intra- individual 

differences in stress physiology. Future 

work will further investigate these 

personalized stress detection systems with 

the aim of implementing approaches that 

account for temporal changes in the 

individual stress response and physiological 

signals. 
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