

 ISSN2454-9940

 www.ijasem.org

 Vol 18, Issue 3, 2024

256

Checking Security Properties of Cloud

Service REST APIs
1P MOUNIKA, 2M.NAGA GAYATHRI

1(Assistant Professor), MSC, DANTULURI NARAYANA RAJU COLLEGE(A) PG COURSES,

BHIMAVARAM ANDHRA PRADESH

2MSC, scholar, DANTULURI NARAYANA RAJU COLLEGE(A) PG COURSES, BHIMAVARAM

ANDHRA PRADESH

ABSTRACT:

Most modern cloud and web services are

programmatically accessed through REST

APIs. This paper discusses how an attacker

might compromise a service by exploiting

vulnerabilities in its REST API. We

introduce four security rules that capture

desirable properties of REST APIs and

services. We then show how a stateful REST

API fuzzer can be extended with active

property checkers that automatically test and

detect violations of these rules. We discuss

how to implement such checkers in a

modular and efficient way. Using these

checkers, we found new bugs in several

deployed production Azure and Office365

cloud services, and we discussed their

security implications. All these bugs have

been fixed.

1.INTRODUCTION

Cloud computing is exploding. Over the last

few years, thousands of new cloud services

have been deployed by cloud platform

providers, like Amazon Web Services and

Microsoft Azure , and by their customers

who are “digitally transforming” their

businesses by modernizing their processes

while collecting and analyzing all kinds of

new data. Today, most cloud services are

programmatically accessed through REST

APIs . REST APIs are implemented on top

of the ubiquitous HTTP/S protocol, and

offer a uniform way to create (PUT/POST),

monitor (GET), manage

(PUT/POST/PATCH) and delete (DELETE)

cloud resources. Cloud service developers

can document their REST APIs and generate

sample client code by describing their APIs

http://www.ijasem.org/

 ISSN2454-9940

 www.ijasem.org

 Vol 18, Issue 3, 2024

257

using an interface-description language such

as Swagger (recently renamed OpenAPI) .

A Swagger specification describes how to

access a cloud service through its REST

API, including what requests the service can

handle, what responses may be received, and

the response format. How secure are all

those APIs? Today, this question is still

largely open. Tools for automatically testing

cloud services via their REST APIs and

checking whether these services are reliable

and secure are still in their infancy. Some

tools available for testing REST APIs

capture live API traffic, and then parse, fuzz,

and replay the traffic with the hope of

finding bugs . Recently, stateful REST API

fuzzing was proposed to specifically test

more deeply services deployed behind REST

APIs. Given a Swagger specification of a

REST API, this approach automatically

generates sequences of requests, instead of

single requests.

2. EXISTING SYSTEM

Scanning of Swagger-based

Representational State Transfer (REST)

APIs - In addition to scanning Simple

Object Access Protocol (SOAP) web

services, Qualys WAS leverages the

Swagger specification for testing REST

APIs. Users need to only ensure the

Swagger version 2.0 file (JSON format) is

visible to the scanning service, and the APIs

will automatically be tested for common

application security flaws. - Enhanced API

Scanning with Postman Support - Postman

is a widely-used tool for functional testing of

REST APIs. A Postman Collection is a file

that can be exported from the tool that clubs

together related requests (API endpoints)

and shares them with other users. These

collections are exported in JSON format.

With the release of Postman Collection

support in Qualys WAS, customers have the

option to configure their API scans using the

Postman Collection for their API.

DISADVANTAGES OF EXISTING

SYSTEM:

➢ SOAP APIs are largely based and use

only HTTP and XML.

➢ On other hand Soap API requires

more resources and bandwidth as it needs

➢ to convert the data in XML which

increases its payload and results in the large

sized file.

➢ On other hand SOAP cannot make

use of REST since SOAP is a protocol and

REST is an architectural pattern.

http://www.ijasem.org/

 ISSN2454-9940

 www.ijasem.org

 Vol 18, Issue 3, 2024

258

3. PROPOSED SYSTEM

REST APIs are implemented on top of the

ubiquitous HTTP/S protocol, and offer a

uniform way to create (PUT/POST), monitor

(GET), manage (PUT/POST/PATCH) and

delete (DELETE) cloud resources. Cloud

service developers can document their REST

APIs and generate sample client code by

describing their APIs using an interface-

description language such as Swagger

(recently renamed OpenAPI) [25]. A

Swagger specification describes how to

access a cloud service through its REST

API, including what requests the service can

handle, what responses may be received, and

the response format

ADVANTAGES OF PROPOSED

SYSTEM:

➢ REST APIs are usually simple to build

and adapt.

➢ With the initial URI, the client does not

require routing information.

4. OUTPUT SCREEN

Home Page:

User Login Page:

User details:

View-files:

http://www.ijasem.org/

 ISSN2454-9940

 www.ijasem.org

 Vol 18, Issue 3, 2024

259

User Profile Page:

5. CONCLUSION

 We introduced four security rules that

capture desirable properties of REST APIs

and services. We then showed how a stateful

REST API fuzzer can be extended with

active property checkers that automatically

test and detect violations of these rules. So

far, we have fuzzed nearly a dozen

production Azure and Office-365 cloud

services using the fuzzer and checkers

described in this paper. In almost all cases,

our fuzzing was able to find about a handful

of new bugs in each of these services. About

two thirds of those bugs are “500 Internal

Server Errors”, and about one third are rule

violations reported by our new security

checkers. We reported all these bugs to the

service owners, and all have been fixed.

Indeed, violations of the four security rules

introduced in this paper are clearly potential

security vulnerabilities. The bugs we found

have all been taken seriously by the

respective service owners: our current bug

“fixed/found” ratio is nearly 100%.

Moreover, it is safer to fix these bugs rather

than risk a live incident – provoked

intentionally by an attacker or triggered by

accident – with unknown consequences.

Finally, it helps that these bugs are easily

reproducible and that our fuzzing approach

reports no false alarms. How general are

these results? To find out, we need to fuzz

more services through their REST APIs and

check more properties to detect different

kinds of bugs and security vulnerabilities.

Given the recent explosion of REST APIs

for cloud and web services, there is

surprisingly little guidance about REST API

usage from a security point of view. Our

paper makes a step in that direction by

contributing four rules whose violations are

security-relevant and which are nontrivial to

check and satisfy

http://www.ijasem.org/

 ISSN2454-9940

 www.ijasem.org

 Vol 18, Issue 3, 2024

260

6. REFERENCES

[1] S. Allamaraju. RESTful Web Services

Cookbook. O’Reilly, 2010.

 [2]Amazon.AWS. https://aws.amazon.com/.

 [3]APIFuzzer.

https://github.com/KissPeter/APIFuzzer.

 [4]AppSpider.

https://www.rapid7.com/products/appspider.

[5] V. Atlidakis, P. Godefroid, and M.

Polishchuk. RESTler: Stateful REST API

Fuzzing. In 41st ACM/IEEE International

Conference on Software Engineering

(ICSE’2019), May 2019.

 [6]BooFuzz.

https://github.com/jtpereyda/boofuzz.

[7] Burp Suite. https://portswigger.net/burp.

 [8] D. Drusinsky. The Temporal Rover and

the ATG Rover. In Proceedings of the 2000

SPIN Workshop, volume 1885 of Lecture

Notes in Computer Science, pages 323–330.

Springer-Verlag, 2000.

[9] R. T. Fielding. Architectural Styles and

the Design of Network-based Software

Architectures. PhD Thesis, UC Irvine, 2000.

 [10] P. Godefroid, M. Levin, and D.

Molnar. Active Property Checking. In

Proceedings of EMSOFT’2008 (8th Annual

ACM & IEEE Conference on Embedded

Software), pages 207–216, Atlanta, October

2008. ACM Press.

http://www.ijasem.org/
https://aws.amazon.com/
https://github.com/KissPeter/APIFuzzer
https://github.com/jtpereyda/boofuzz
https://portswigger.net/burp

