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1.0 INTRODUCTION 

 

Design flexibility, lower material utilisation, and near net shape production (NNSP) are just a 

few of the benefits that additive manufacturing (AM) provides over traditional manufacturing. 

Thanks to its simplicity, cost, and many applications in prototyping, engineering, and education, 

fused filament fabrication (FFF), also known as fused deposition modelling (FDM), has become a 

popular AM process among many others [1, 2]. In comparison to other methods, FDM has lower 

system costs and shorter build times because to its layer-by-layer method of employing melted 

filament, which allows for efficient item construction with minimum waste formation. Form, 

function, and fitness are all factors that designers take into account while creating 3D printed 

products using FDM. The development of high-performance polymers has made it more difficult to 

achieve desirable mechanical properties through FDM. It is especially crucial to mechanically test 

high-grade polymers such as Polyether ether ketone (PEEK), Polyetherketoneketone (PEKK), and 

Polyethylenimine (PEI) that serve as metal replacements [3, 4]. Numerous biomedical therapies 

have made extensive use of PEEK and its variants. These include maxillofacial surgery, orthopaedic 

surgeries, dental implants, and other similar procedures. Its high strength-to-weight ratio and long 

service life have also made it a favourite among many manufacturers [5]. Engineers may test the 

strength, durability, performance, and structural integrity of a component by putting it through a 

series of mechanical stresses, including compression, bending, torsion, and tension. By doing so, 

they are able to pinpoint any restrictions or shortcomings and make educated choices to enhance 

designs appropriately. Improving mechanical properties like tensile, compression, and flexural 

strengths, as well as overall part performance and durability, has been the subject of several studies 

[6–8] that have concentrated on optimising FDM-AM process parameters. These parameters include 

layer thickness, raster angle, print speed, nozzle temperature, infill patterns, and density. In order to 

increase the use of 3D printed components in different sectors, it is crucial to comprehend and 

enhance these mechanical characteristics. 
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Figure 1. Classification of polymers [9] 

 

Focussing on PEEK, a high-performance thermosetting polymer, this research aims to assess the impact behaviour of 3D-

printed components made from high-performance polymers. While several studies have looked at how different process 

factors affect 3D printed PEEK components, the correlation between process parameters, build time, and impact strength has 

received comparatively less attention. To better understand how filler content affects mechanical properties and tribological 

properties of PEEK composites, Zhang et al. (2004) investigated this topic [10]. Wu et al. (2014) examined the effect of 

printing settings on thermal deformation and dimensional accuracy in 3D printed PEEK. They discovered that although the 

printing technique achieved excellent precision, it was susceptible to distortion when subjected to high temperatures [11]. 

Higher printing and chamber temperatures enhanced crystallinity and strength, but slower cooling rates improved 

crystallisation and mechanical performance, according to Yang et al. (2017), who studied the effects of thermal processing 

parameters on the mechanical characteristics and crystallinity of PEEK [12]. In their 2017 study, Berretta et al. compared 

FDM-fabricated CNT-PEEK composites to pure PEEK in terms of mechanical qualities and thermal behaviour, and they 

found that the addition of carbon nano tubes (CNTs) increased mechanical capabilities but decreased thermal stability [13]. 

Printing parameters had a major influence on the mechanical strength of 3D printed PEEK components, as shown by Rinaldi 

et al. (2018). Printing temperatures had a positive effect on mechanical characteristics, whereas raster angle and layer height 

had a negative effect [14]. Deng et al. (2018) investigated the best temperature, speed, and infill density settings for FDM 

printing of PEEK in order to improve its mechanical characteristics [15]. Print orientation, layer thickness, and the impact of 

post-processing on mechanical behaviour and surface quality were examined in Arif et al.'s (2018) study of biocompatible 

PEEK qualities [16]. Subsequently, in 2019, Saja et al. explored PEEK's mechanical characteristics in an effort to determine 

its suitability as a denture material [17]. According to Wang et al. (2019), PEEK surface quality was enhanced with higher 

printing temperatures and lower printing rates, while flaws and degradation were produced by excessive temperatures [18]. 

Concurrently, Li et al. (2019) examined the effects of building orientation, fibre content, and fibre length on the flexural 

characteristics and fracture behaviour of CF/PEEK composites [19]. Adding multi-walled carbon nanotubes (MWCNTs) to 

PEEK increased its impact strength, according to Yingshuang et al. (2019) [20]. In addition, a 2019 research by Haijun et al.  

studied the impact strength of 3D printed PEEK. The study primarily focused on evaluating PEEK's resistance to impact 

pressures, which provided more insights into its mechanical performance and indicated practical prospective uses [21]. A 

study conducted by Singh et al. (2019) investigated the use of 3D printing technology to produce PEEK components for a 

range of biomedical uses, yielding valuable insights for the medical and healthcare industries [22]. Composite filaments 

made of PEEK and HA were produced by Zheng et al. (2021), who found that their material had a higher tensile modulus but 

lower tensile strength than pure PEEK [23]. In the field of 3D printing, there has been little study on the correlation between 

process parameters, build time, and impact strength as it pertains to high-performance polymers. For the purpose of 

evaluating production process safety, efficiency, and quality control, it is essential to understand and measure the optimal 

material impact strength.  

So, taking material utilisation and production efficiency into account, this study intends to evaluate the impact behaviour of 

3D printed components and investigate the effect of process factors on impact strength, namely print orientation, infill 

density, and environmental conditions—chamber temperature. An overview of the FDM method using PEEK and pertinent 

studies on process parameter optimisation are included in the article's arrangement. Detailed descriptions of the experiments, 

methods, extensive analyses of the data, and discussions of the key results follow, followed by a brief summary and last 

thoughts on the subject.  

 

2.0 EXPERIMENTAL DETAILS 

Figure 2 shows the schematic layout of FDM 3D PEEK printing, where CreatBot F160 PEEK-3D printer 

(manufacturer: Createbot Inc, China) is used to create the specimens. The 3D printer is equipped with a sizable build 

volume of (x:160mm, y:160mm, z:200mm) and incorporates a specialised heating system optimised for handling high- 

grade polymers efficiently. 

http://www.ijasem.org/


        ISSN2454-9940 

        www.ijasem.org  

           Vol 17, Issue 1, 2023 

 

 

 

 

 

 
 

16 

 

2.1 Setting Parameters 

Given the constraints of the research scope, the authors focused on the most critical printing parameters that directly 

impact the impact strength of thermoplastic polymers. These parameters were carefully selected based on insights gleaned 

from various previous studies. For the investigation, the author chose to work with PEEK, a high-grade polymer featuring 

a filament diameter of 1.75 mm. Table 1 outlines the essential properties of PEEK. By systematically studying the 

influence of specific printing parameters on PEEK's mechanical properties, the aim was to gain valuable insights into 

enhancing the impact strength of 3D printed PEEK components. 
 

Figure 2. Schematic layout of FFF 3D PEEK printing 

 

2.2 Sample Preparation 

A nano polymer adhesive (manufacturer: Visionminer) designed for high-temperature build plate glue was initially 

used to address the common issue of bottom layer stick-out encountered while handling PEEK in Fused Deposition 

Modeling (FDM-AM). To further enhance print quality and reduce defects caused by moisture in the PEEK filament, the 

filament was dried in a filament drier (manufacturer: Creality Inc.) for 2 hours at 600C, following the recommendations 

from Cicala et al. (2017) [24]. For the experiment, SolidWorks (2022 edition) was employed to model the printed samples 

according to ASTM standards (refer to Figure 3). The STL file (*.stl) of the samples was then imported into Simplify3D, 

a licensed 3D slicing software, to configure print parameters and generate the necessary G-Code for the 3D-printer. To 

optimise the impact strength (IS) of PEEK, the study considered various print parameters, such as chamber temperature 

(CT) and build orientation (XY: horizontal, XZ: vertical, refer to Figure 4(a) and (b). Specimens were printed using the 

optimised parameters for strength [25] which included a layer thickness of 0.01 mm, nozzle temperature of 440 °C, print 

direction at 0°, while printed with a speed of 15 mm/sec and 0.4 mm brass nozzle [25]. The bed temperature was 

maintained at 120 °C for printing all specimens used in this research. The impact of print density, along with other selected 

print parameters on the impact strength of PEEK was investigated through the fabrication of the specimens (refer to Figure 

4(c)). Moreover, balancing the strength, weight, and print time, the optimal infill density was determined through iterative 

testing and adjustments. 

 

Table 1. Properties of PEEK [3] 

Properties Values Properties Values 

Specific gravity 1.3 gm/cc Flexural strength 125-128 MPa 

Glass transition temperature 143 0C Young’s modulus 3.7 GPa 

Melting point 340 0C Operating temperature 250 0C 

 
 

Figure 3. CAD model of the specimen (all dimensions are in mm) 
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(a) (b) (c) 

Figure 4. Representation of: (a) XY-build orientation, (b) XZ-build orientation and (c) Printed impact test specimens 

 

 

Figure 5. Specification of notched ASTM D256 specimen 

 

2.3 Sample Testing 

Subsequently, the printed specimens were notched in accordance with the ASTM standard (see Figure 5) and prepared 

for the mechanical Izod impact test (see Figure 6). The Izod impact test was conducted using an Izod impact tester 

(manufacturer: Deepak Polyplast, Unique ID No.: KL/ICT/01, Sl. No.: 2K103074) equipped with a digital impact 

indicator and a hammer mass of 4260 gms (see Figure 7). 

Figure 6. Impact test of ASTM D256 specimen 

 
 

Figure 7. Izod impact test equipment 
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3.0 METHODOLOGY 

The optimization of the 3D printing process involves systematically selecting appropriate process parameter values to achieve 

specific objectives, where the desired response variable or performance parameter is maximized or minimized. In simpler terms, it's 

about finding the best combination of settings to achieve the desired outcome in the 3D printed object. In this PEEK material based 

printing process parameters, namely, print orientation (PO), print density (PDN) and chamber temperature (CT) [in 0C] are 

considered. In extrusion based 3D printing process, the mentioned process parameters are highly discussed in the earlier published 

articles as mentioned in the introduction section. Now, three response variable or performance variables, namely, print time (PT) [in 

mins], impact strength (IS) [in kJ/m2] and material used (MU) [in gms] are considered in this article. In the manufacturing sector, 

production time is a vital parameter to measure the efficiency of the manufacturing process along with the product quality. On the 

other hand, in case of 3D printing process, impact strength is one of the important parameters for measuring the print quality. Along 

with these response parameters, material utilization indicator related to printing cost, is also considered as one of the important 

response variable. This research initially uses analysis of variance (ANOVA) method for finding the individual process parameters 

impact on the selected response variable. Next correlation analysis has been used to know the association between the process 

parameters and the response variables. The ANOVA and Correlation analysis indicates a proper explanation of the relationship 

between them. Then two different modified Taguchi methods, namely, Taguchi and Composite Desirability Taguchi (TOPSIS), are 

used to optimize the method and the final results are compared with mix Taguchi method for result comparison and at the end a 

Regression equation is derived for estimating the impact strength of printed object for PEEK. 

3.1 Data Generation 

The initial data generation has been done through conducting lab experiments. In this article the data for the analysis 

has been generated based on the orthogonal array L18, which is a schema for performing experiments [26]. Here the L18 

orthogonal array is selected as the number of process parameters are three with a mixed number of levels. The detailed 

level information for various input parameters including output parameters used in this article has been provided in Table 

2. Also the parameters, which are kept constant during the printing process, are provided in the same Table 2. 

 

Table 2. Details of printing parameters 

Input Parameter(s)    Output Parameter(s) 

Level (s) Level 1 Level 2 Level 3  

Print Orientation (PO) XY XZ - Impact Strength (IS) 

Print Density (PDN) High (100%) Medium (90%) Low (80%) Print Time (PT) 

Chamber Temperature (CT) 70o C 60o C 50o C Material Utilization (MU) 

Other setting print parameters, which are kept constant   

Nozzle temperature 440 0C Print speed 15 mm/sec  

Layer height 0.01 mm Print direction 00  

The orthogonal array with the response values is provided in Table 3. In this table aforementioned three process 

parameters levels along with the response values, which are obtained through lab testing are provided. This data set is 

further used for all kind of data analysis process for performing correlation analysis, analysis of variance, process 

optimization and regression analysis. 

 
Table 3. L18 OA data for analysis 

TN PO PDN (%) CT (0C) PT (mins) IS (kJ/m2) MU (gms) 

1 XY 80 50 84 74.03 3.08 

2 XY 80 60 84 75.51 3.08 

3 XY 80 70 84 75.88 3.08 

4 XY 90 50 89 117.59 3.27 

5 XY 90 60 89 91.33 3.27 

6 XY 90 70 89 100.51 3.27 

7 XY 100 50 98 112.48 3.64 

8 XY 100 60 98 81.61 3.64 

9 XY 100 70 98 96.53 3.64 

10 XZ 80 50 84 65.25 3.08 

11 XZ 80 60 84 71.79 3.08 

12 XZ 80 70 84 55.98 3.08 
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Table 3. (cont.) 

TN PO PDN (%) CT (0C) PT (mins) IS (kJ/m2) MU (gms) 

13 XZ 90 50 89 86.98 3.27 

14 XZ 90 60 89 72.63 3.27 

15 XZ 90 70 89 99.78 3.27 

16 XZ 100 50 98 230.4 3.64 

17 XZ 100 60 98 224.13 3.64 

18 XZ 100 70 98 225.49 3.64 

*TN=Treatment No. 

3.2 Analysis of variance (ANOVA) 

Analysis of variance is a process where the variances in response variables are analyzed to understand the contribution 

of each process parameter. The ANOVA has been conducted for each response variable and tabulated the summary of 

the analysis in Tables 4 through 6 [26]. The important statistics can be found in the table which are useful for describing 

the phenomenon. 

Table 4. Analysis of variance for impact strength 

Source df Adj SS Adj MS F Value P Value VIF 

Regression 3 30733.4 10244.5 6.06 0.007  

PDN 1 25410.4 25410.4 15.04 0.002 1 

CT 1 88.3 88.3 0.05 0.822 1 

PO 1 5234.7 5234.7 3.10 0.100 1 

Error 14 23648.2 1689.2    

Total 17 54381.6     

 
Table 5. Analysis of variance for print time 

Source df Adj SS Adj MS F p VIF 

Regression 3 588.0 196.000 171.50 0.00  

PDN 1 588.0 588.000 514.50 0.00 1 

CT 1 0.0 0.000 0.00 1.00 1 

PO 1 0.0 0.000 0.00 1.00 1 

Error 14 16.0 1.143    

Total 17 604.0     

 
Table 6. Analysis of variance for material used 

Source df Adj SS Adj MS F p VIF 

Regression 3 0.9408 0.3136 135.51 0.00  

PDN 1 0.9408 0.9408 406.52 0.00 1 

CT 1 0.000 0.0000 0.00 1.00 1 

PO 1 0.000 0.0000 0.00 1.00 1 

Error 14 0.0324 0.002314    

Total 17 0.9732     

According to the Tables 4 through 6, the contribution of PDN in variance for all response variables is highest. In case of impact 

strength, the second highest contributor in variance is print orientation (PO). Similarly based on the F value and p value it can be stated 

that the (PDN) has a significant impact on the response variables. 

3.3 Pearson Correlation 

A correlation analysis has been conducted to know the association between different types of variables before process optimization. 

Pearson correlation is a method for finding the statistical association between two variables. This basically is the ratio of covariance 

and product of standard deviation. The correlation coefficient provides useful information how the two variables behaves to each 

other according to the collected data. The expression for calculating the Pearson correlation coefficient (rp) is provided in Eq. (1) 

[27]. The calculated correlation coefficients are provided in Table 7. 
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𝜎𝑥,𝑦 

𝑟𝑝 = 
𝜎 𝜎

 
𝑥  𝑦 

(1) 

where, 𝜎𝑥,𝑦 is indicating the covarience of two variables x and y, 𝜎𝑥 and 𝜎𝑦 are the standard deviation of x and y. 

 

Table 7. Correlation analysis summary 

 PDN CT PT IS MU 

PDN 1.000     

CT 0.000 1.000    

PT 0.987** 0.000 1.000   

IS 0.684** -0.040 0.704** 1.000  

MU 0.983** 0.000 1.000** 0.705** 1.000 

** indicates the 95% confidence interval   

According to the data, material utilization (MU) and print time (PT) has full positive significant correlation. Similarly, impact 

strength (IS) and MU have high significant positive correlation (0.705**). The impact strength is high positively correlated to print 

time (0.704**). As per the correlation values, if only material utilization is considered in analysis then the print time will be 

automatically taken care off. So, accordingly further in the optimization of process only MU and IS are considered. The correlation 

analysis also indicates that which process parameters out of the selected three process parameter need to be given importance while 

optimizing the process. The correlation analysis indicates the print density have high positive correlation on the IS, MU and PT. So, 

print density is an important parameter while optimizing the process in the present scenario. 

3.4 Taguchi’s Design of Experiment 

Taguchi’s design of experiment (DOE) is an optimization method, which considers the impact of the levels of the process 

parameters on the response value. This method is a very popular method of optimization as it considers the loss function for finding 

the right combination of process parameter levels to generate the optimal value of response. The two concepts for such optimization are 

Smaller-the-better and Larger-the-better. The signal to noise ratio for smaller the better (SNRs) and larger the better (SNRL) calculations 

for the two cases are represented with Eqs. (2) and (3) [26]. 
 

n 

SNR  = −10 log log (
1 
∑ y2) 

s n 
i
 

i=1 

 

(2) 

n 
1 1 

SNRL      = −10 log log (
n 
∑ 

y2) 
i=1     i 

 
(3) 

The Taguchi method is applied to optimize individual response variables. The main effect and signal to noise effect 

has been observed and the effects are provided in Tables 8 through 10. 

 

Table 8. Main effect of signal to noise ratio and mean value for impact strength 

Signal to noise ratio   Mean  

Levels PO PDN CT PO PDN CT 

1 39.13 36.82 40.36 91.72 69.74 114.46 

2 40.63 39.44 39.39 125.83 94.80 102.83 

3  43.38 39.89  161.77 109.03 

Delta 1.50 6.56 0.96 34.11 92.03 11.62 

Rank 2 1 3 2 1 3 

 
Table 9. Main effect of signal to noise ratio and mean value for print time 

Signal to noise ratio   Mean  

Levels PO PDN CT PO PDN CT 

1 -39.10 -38.49 -39.10 90.33 84.00 90.33 

2 -39.10 -38.99 -39.10 90.33 89.00 90.33 

3  -39.82 -39.10  98.00 90.33 

Delta 0.00 1.34 0.000 0.000 14.00 0.000 

Rank 2.5 1 2.5 2.5 1 2.5 
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Table 10. Main effect of signal to noise ratio and mean value material used 

Signal to noise (S/N) ratio  Mean  

Levels PO PDN CT PO PDN CT 

1 -10.428 -9.771 -10.428 3.330 3.080 3.330 

2 -10.428 -10.291 -10.428 3.330 3.270 3.330 

3  -11.222 -10.428  3.640 3.330 

Delta 0.000 1.451 0.000 0.000 0.560 0.000 

Rank 2.5 1 2.5 2.5 1 2.5 

The data is analysed using the Taguchi DOE for the objective of smaller the better. Here for the three response parameters data 

analysis has been presented in Tables 6 through 8. In Table 6, 7, and 8 the main effect of signal to noise ratio (S/N) and mean can be 

observed where the PDN got the highest rank of 1. On the other hand, PO and CT have an equal rank of 2.5 for PT and MU. While, 

in case of IS, the PO has got rank 2 and CT ranked as 3. 

3.5 Technique for Order Preference by TOPSIS based Taguchi 

Technique for TOPSIS is a method for selecting the best alternative based on the criteria values [28]. The technique is a well-

known multicriteria decision making method and this method is utilized for combining the three response variables into a single 

variable for applying the Taguchi based response optimization. 

Step 1: Prepare the table containing the alternatives and criteria values (𝑥𝑖𝑗 ). Fix the weight values (𝑤𝑖𝑗 ) for the criterias. 

Step 2: Normalise the criteria values for particular alternatives using Eq. (4). 

𝑥𝑖𝑗 

𝑟𝑖𝑗 =    𝑖 = 1,2,3, … … . 𝑛 ; 𝑗 = 1,2,3 … … . . 𝑚 
√∑𝑚  𝑥2 

𝑘=1  𝑘𝑗 

 
(4) 

where n is the number of alternatives and m is the number of criteria. 

Step 3: Calculate the weighted normalised values (𝑣𝑖𝑗 ) for criteria for alternatives based on the Eq. (5). 
 

𝑣𝑖𝑗 = 𝑟𝑖𝑗  × 𝑤𝑖𝑗 (5) 

Step 4: Identify the positive ideal solution (𝐴+) and negative ideal solution (𝐴−) which are represented with Eqs. (6) and 

(7). 
 

𝐴+ = {𝑣+, 𝑣+, … . . , 𝑣+} 
1 2 𝑚 (6) 

𝐴− = {𝑣−, 𝑣−, … . . , 𝑣−} 
1 2 𝑚 (7) 

Step 5: Calculate the distance (𝑑𝑝𝑖) between every alternative and positive ideal solution using Eq. (8). Similarly, calculate 

the distance (𝑑𝑛𝑖) between every alternative and negative ideal solution using Eq. (9). 
 

𝑚 
2 

𝑑𝑝𝑖 = √∑(𝑣𝑖𝑗 − 𝑣+) 
𝑗 

𝑗=1 

 
(8) 

𝑚 

𝑑 = √∑(𝑣    − 𝑣−)
2

 
𝑛𝑖 𝑖𝑗 𝑗 

𝑗=1 

 
(9) 

 

Step 6: Now calculate (𝐶∗) using Eq. (10). The range of value for 0 ≤ 𝐶∗ ≤ 1 
 

  𝑑𝑝𝑖  
𝐶∗ = 

𝑑𝑝𝑖 + 𝑑𝑛𝑖 
(10) 

Here, the lower value of C∗ is desired as it indicates a solution nearer to the positive ideal solution. In the proposed 

methodology this C∗ is used as the response variable for Taguchi's design for experiment based optimization. Such an 

approach of hybridization, where a multicriteria decision making approach is combined with design of experiment can be 

found in recent literature [29, 30] for combining several objectives. 

The 18-treatment condition can be considered as alternatives for the process of the TOPSIS method. The three 

response variables can be considered as the criteria for the best alternative selection. Two different sets of weight values 

are considered (0.4,0.3,0.3) and (0.5,0.25,0.25) for IS, PT and MU. The main reason for assigning same weight values to 

PT and MU is because of the full correlation between them (rp = 1.00∗∗).The TOPSIS scores C∗ for these two cases are 
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provided in Figure 8. The intermediate calculation of weighted normalised matrix, distance from positive ideal solution 

(dpi), distance from negative idle solution (dni) and TOPSIS score C∗ for each alternative has been provided for the two 

cases with different criteria weights in Table 11 and Table 13 given below. The ANOVA for the two TOPSIS scores are 

also provided in Table 12 and Table 14. This selection of best alternative using TOPSIS has been conducted for weight 

values of IS, keeping the other two responses with equal weightage indicates no change in best alternative selection. 

 

Table 11. Weighted normalized alternatives for TOPSIS case 1 

 WIS WPT WMU 
   

 0.4 0.3 0.3    

Alternatives nIS*w nPT*w nMU*w 𝑑𝑝𝑖 𝑑𝑛𝑖 𝐶∗ 

1 0.057270408 0.065618325 0.065243 0.12096952 0.021338 0.850057801 

2 0.058415352 0.065618325 0.065243 0.11982458 0.022104 0.844259063 

3 0.058701588 0.065618325 0.065243 0.11953834 0.022301 0.842774403 

4 0.090968894 0.069524178 0.069268 0.08745106 0.048811 0.641784616 

5 0.070653874 0.069524178 0.069268 0.10773214 0.029304 0.786158688 

6 0.077755622 0.069524178 0.069268 0.1006407 0.036022 0.736416829 

7 0.087015743 0.076554713 0.077106 0.09264002 0.043709 0.67943292 

8 0.063134377 0.076554713 0.077106 0.11623084 0.019828 0.854271166 

9 0.074676651 0.076554713 0.077106 0.10481256 0.03137 0.769647921 

10 0.050478105 0.065618325 0.065243 0.12776182 0.017656 0.878581716 

11 0.055537519 0.065618325 0.065243 0.12270241 0.020246 0.85836659 

12 0.043306733 0.065618325 0.065243 0.1349332 0.016134 0.893197063 

13 0.067288667 0.069524178 0.069268 0.11109292 0.026191 0.809217711 

14 0.056187352 0.069524178 0.069268 0.12218136 0.016636 0.880156954 

15 0.077190886 0.069524178 0.069268 0.10120456 0.035482 0.74041181 

16 0.178239928 0.076554713 0.077106 0.01613447 0.134933 0.106802937 

17 0.173389389 0.076554713 0.077106 0.01684782 0.130083 0.114665222 

18 0.174441499 0.076554713 0.077106 0.01657556 0.131135 0.112216665 

**Note: PIS: [0.065618325,0.178239928,0.065243]; NIS: [0.076554713,0.043306733,0.077106] 

W indicates the weight value for particular response variable, n indicates the normalized value. 
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Table 12. Analysis of variance for first case 1 

Source 

  (TS1)  
df Adj SS Adj MS F p VIF 

Regression 3 1.03829 0.346096 6.59 0.005  

PDN 1 0.87513 0.875135 16.67 0.001 1.00 

CT 1 0.00267 0.002668 0.05 0.825 1.00 

PO 1 0.16048 0.160484 3.06 0.102 1.00 

Error 14 0.73500 0.052500    

Total 17 1.77328     

 
Table 13. Weighted normalised alternatives for TOPSIS case 2 

 WIS WPT WMU 
   

 0.5 0.25 0.25    

Alternatives nIS*w nPT*w nMU*w 𝑑𝑝𝑖 𝑑𝑛𝑖 𝐶∗ 

1 0.071588009 0.054681938 0.054369 0.15199633 0.036056 0.808267094 

2 0.073019189 0.054681938 0.054369 0.15057261 0.03677 0.803728824 

3 0.073376984 0.054681938 0.054369 0.1502167 0.036955 0.802561012 

4 0.113711117 0.057936815 0.057723 0.10961715 0.065359 0.626468983 

5 0.088317343 0.057936815 0.057723 0.13491151 0.043484 0.756250303 

6 0.097194527 0.057936815 0.057723 0.12606454 0.05076 0.71293648 

7 0.108769679 0.063795594 0.064255 0.11404908 0.057559 0.664589572 

8 0.078917972 0.063795594 0.064255 0.14389688 0.030696 0.824187466 

9 0.093345813 0.063795594 0.064255 0.1294707 0.043192 0.749847293 

10 0.063097631 0.054681938 0.054369 0.1604452 0.032798 0.83027575 

11 0.069421899 0.054681938 0.054369 0.15415142 0.035058 0.814711362 

12 0.054133416 0.054681938 0.054369 0.1693701 0.031549 0.842975485 

13 0.084110834 0.057936815 0.057723 0.13910505 0.040261 0.775537348 

14 0.070234191 0.057936815 0.057723 0.15294396 0.031329 0.829983818 

15 0.096488607 0.057936815 0.057723 0.1267679 0.050162 0.716485118 

16 0.22279991 0.063795594 0.064255 0.00207354 0.169636 0.012075839 

17 0.216736736 0.063795594 0.064255 0.00640794 0.163609 0.037690066 

18 0.218051874 0.063795594 0.064255 0.00518106 0.164916 0.030459486 

**Note PIS: [0.054681938, 0.22279991, 0.054369]; NIS: [0.063795594,0.054133416,0.064255], 

W indicates the weight value for particular response variable, n indicates the normalized value. 

 
Table 14. Analysis of variance for case 2 

Source 

(TS2) 
df Adj SS Adj MS F p VIF 

Regression 3 0.471945 0.157315 6.69 0.005  

PDN 1 0.436419 0.436419 18.55 0.001 1.00 

CT 1 0.002183 0.002183 0.09 0.765 1.00 

PO 1 0.033344 0.033344 1.42 0.254 1.00 

Error 14 0.329298 0.023521    

Total 17 0.801243     
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Figure 8. Weighted normalised alternatives for TOPSIS score for two cases 

 
The application of the Taguchi based method on the TOPSIS scores for two cases indicates that the importance of PDN is highest 

followed by PO and CT. The main effects of signal to noise ratio and mean for both cases are provided in Table 15 and Table 16. The 

delta values and rank for all process parameters are provided in same tables. The score of C∗ is used as the response variable for 

Taguchi design experiment with smaller-the-better approaches. The calculated levels for the three process paramaters are 

PDN=100%, PO=XZ and CT=500C. The details for the results has been provided in results discussion. So further, the same problem 

has been solved using composite desirability. 

 

Table 15. Main effect of signal to noise ratios and mean for case 1 

Signal to Noise ratio   Mean  

Levels PO PDN CT PO PDN CT 

1 2.218 1.300 5.169 0.7783 0.8612 0.6610 

2 7.359 2.360 4.363 0.5993 0.7657 0.7230 

3  10.706 4.835  0.4395 0.6824 

Delta 5.140 9.406 0.806 0.18885 0.4217 0.0620 

Rank 2 1 3 PO PDN CT 

 
 

Table 16. Main effect of signal to noise ratios and mean for case 2 (Smaller is the better) 

Signal to Noise ratio   Mean  

Levels PO PDN CT PO PDN CT 

1 2.132 1.047 5.602 0.7867 0.8867 0.6655 

2 8.229 2.291 4.720 0.6009 0.7720 0.7284 

3  12.203 5.220  0.4228 0.6875 

Delta 6.098 11.155 0.883 0.1858 0.4639 0.0629 

Rank 2 1 3 2 1 3 

3.6 Composite Desirability Based Optimization 

The traditional Taguchi analysis can provide the optimal process parameter value for a specific objective, but it has limitation in 

tackling multiple objectives. Now here two objectives, namely, maximum impact strength and minimum material utilization is 

considered as there two parameters for optimization problem. The composite desirability, D is calculated based on the Eqs. (11) 

through (13) [31], whereas desirability function dj(Yj) is used to converts the response values Yj(x), between 0 and 1. The individual 

desirability values are combined using Eq. (11), which gives the composite desirability, D. 

T
O

P
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1 

𝐷 = (𝑑1(𝑌1) × 𝑑1(𝑌1) × … … . .× 𝑑𝑘(𝑌𝑘 ))𝑘 (11) 

where, ‘k’ is the number of responses. The desirability for maximization is presented in Eq. (12). 
 

0 𝑖𝑓 𝑌𝑗 < 𝐿𝑗 
𝑌𝑗 − 𝐿𝑗 

𝑑 (𝑌 ) =    ( )𝑠 𝑖𝑓 𝐿𝑗 ≤ 𝑌𝑗 ≤ 𝑇𝑗 
𝑗     𝑗 𝑇𝑗 − 𝐿𝑗 

𝗅 1 𝑖𝑓 𝑌𝑗 > 𝑇𝑗 

 
 

(12) 

Desirability function for 𝑌𝑗 response minimization 
 

1 𝑖𝑓 𝑌𝑗 < 𝑇𝑗 
𝑌𝑗 − 𝑈𝑗 

𝑑𝑗(𝑌𝑗) =    ( )𝑡 𝑖𝑓 𝑇𝑗  ≤ 𝑌𝑗  ≤ 𝑈𝑗 
𝑇𝑗  − 𝑈𝑗 

𝗅 0 𝑖𝑓 𝑌𝑗 > 𝑈𝑗 

 

(13) 

where, s = t =1, the desirability function increases linearity towards 𝑇𝑗 , for s < 1, t <1 function is convex; s > 1, t > 1 

concave. 

After calculating the composite desirability, the multivariate gradient decent algorithm has been deployed for 
optimizing the process [32]. The expression for calculation has been provided in Eq. (14). Repeat the process until it  
converges, where J is the cost function (here the composite desirability) , 𝜃𝑚 is the mth decision variable or here it is the 

process parameter, N is number of process parameters and 𝛼 is learning rate. 
 

𝑁 
𝜕 

𝜃𝑚  = 𝜃𝑚 − 𝛼 ∑ 
𝜕𝜃  

𝐽(𝜃0, 𝜃1, … , 𝜃𝑁) 
𝑚=0 

𝑚
 

 

(14) 

The composite desirability change with individual objectives is provided in Figure 9. This indicates for satisfying the 

objectives the print density should be 87.68%, chamber temperature of 50oC and orientation of XZ. 

Figure 9. Desirability analysis summary 

 

3.7 Regression Analysis 

The Impact Strength estimation model is tried to derive with multiple combinations of process parameters. Regression 

method is deployed to establish the relationship between the impact strength and process parameters [33]. Here multiple 

regression models are created and then based on the Akaike Information Criterion (AIC) value [34], tries to find the best 

fit with minimum number fewest possible independent variable. The multiple fitted models are compared then based on 

minimum AIC best model is selected. The independent variable here is here impact strength and for improving the model 

multiple variables are created based on the concept of feature engineering. The variables are ON, PDN, CT, PDN x CT, 

PDN2, CT2. The tested models along with AIC values are provided in Table 17 and a model summary has been provided 

in Table 18. 

http://www.ijasem.org/


        ISSN2454-9940 

        www.ijasem.org  

           Vol 17, Issue 1, 2023 

 

 

 

 

 

 
 

26 

 

Table 17. Model selection for estimating the impact strength 

Model Variable set AIC 

1 ON; PDN; CT; PDN x CT; PDN2; CT2 141.58 

2 ON; PDN; CT; PDN2;CT2 139.60 

3 ON; PDN; CT; PDN2 137.86 

4 ON; PDN; PDN2 135.94 

5 ON; PDN2 135.01 

 
Table 18. The summary of selected impact strength estimation model 

 Coefficient P value Adjusted R2 

Intercept -118.6045 0.0418 51.37% 

ON: XZ 34.1067 0.0865  

PDN2 0.0258 0.0010  

The selected predictive model has adjusted R2 of 51.37%. It is indicating that the model parameters ON and PDN2 can 

explain the 51.37% variability within the impact strength. The P value indicates that the PDN2 have a significant impact 

on the Impact strength value. Thus, the regression model has been provided as Eq. (15). 
 

𝐼𝑚𝑝𝑎𝑐𝑡 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑋𝑍=1 = −118.6045 + 34.1067𝑋𝑍 + 0.0258𝑃𝐷𝑁2 (15) 

 

4.0 RESULTS AND DISCUSSION 
 

The three response variables—Impact intensity, Print time, and Material utilization—show that the PDN has the most 

significance according to the correlation coefficient values and ANOVA. The density of a 3D printed item is the amount of 

material that fills it up [35]. In general, a higher print density indicates a higher material content and a more robust interior 

structure. Consequently, printed components with higher PDN values often have better impact resistance. A component with 

a lower print density could contain holes or weak spots, making it more prone to cracking or breaking upon contact [36]. In 

contrast, a denser and more solid structure is less likely to do so. It should be noted that although the Print density does 

impact the quantity of material that has to be deposited and solidified during 3D printing, it is typically the case that higher 

PDN values result in longer print times since more material needs to be printed. On the other hand, because less material has 

to be deposited with a lower print density, printing times may be reduced. Nevertheless, it should be mentioned that other 

variables, including printing technique, layer height, design complexity, etc., may influence the effect on print time. The term 

"material utilisation" describes how well the 3D printing process makes use of the materials used to make the final product. A 

decrease in material utilisation efficiency might be the consequence of a higher print density, as it indicates the usage of more 

material [36]. As less material is needed to accomplish the specified component shape, lower PDN values may result in 

greater material utilisation. For additive manufacturing to be cost-effective and waste-minimizing, material utilisation 

efficiency must be maximised [37–39]. It should be noted that the relationship between PDN and the three response variables 

(impact strength, print time, and material utilisation) may not be linear and can vary further depending on the specific 3D 

printing technology and object complexity. For more information, see Eq. (15). Previous research has shown a direct 

relationship between the amount of material used and the amount of time spent printing [38, 39], and there is a perfectly 

significant positive connection between the two variables. When dealing with three variables, the independent variables of 

chamber temperature and print orientation do not seem to have a substantial influence. To manage the cooling pace of the 

produced components or use temperature-sensitive materials like PEEK in FDM, chamber temperature may be a critical 

variable in certain 3D printing techniques [40, 41]. But by paying close attention to the nozzle temperature during extrusion, 

we were able to regulate the melting and solidification of the PEEK filament [10,13,16]. In a short amount of time, the 

extruded material hardens and joins the deposited layer. The bonding process may be unaffected by the chamber temperature 

since the melting and solidification happen so quickly after each other. Furthermore, it is common for the extruder head to 

follow overlapping routes when printing, which increases the likelihood of material fusion between successive passes. The 

3D printed part's overall strength is enhanced by the excellent bonding between layers made possible by this overlapping 

design. The printing process also depends on the print orientation, which describes the 3D model's placement on the build 

platform. Mechanical qualities, printing time, and material utilisation might vary depending on orientation [42, 43]. While 

print orientation does affect response variables, it may not always have a major impact, particularly when additional 

optimisations have been made to print density and layer height. More important for material bonding in FDM are the layer 

height and extrusion parameters, including nozzle temperature and extrusion rate [41]. By fine-tuning these settings, you can 

minimise the effect of print orientation and chamber temperature on material bonding, resulting in robust interlayer adhesion 

and bonding [44]. Traditional Taguchi, TOPSIS-based Taguchi, and Composite Desirability Enabled Gradient Decent are the 

three approaches used to analyse optimisation cases. The optimisation results show that the Taguchi-based approach is unable 

to use the orthogonal array to generate results. Nevertheless, this approach reveals once again which  
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parameters are more influencing while going for optimization. It indicates print density with 100%, chamber temperature 

of 500C and print orientation of XZ produces the highest impact strength but it requires higher print time of 98 min. 

Similar result also found in case of Taguchi based optimization where the target is maximization of impact strength. As 

the problem is a multi-objective problem, in that context the composite desirability produces moderate results. It selects 

the print density as 87.70%, chamber temperature of 500C and print orientation of XZ. The solution indicates an impact 

strength value of 86.5 kJ/m2, print time of 89 min and material utilization of 3.26 gm. The results from different methods 

are provided in Table 19. The reader can also refer to Table 20 for the main effect plot and signal to noise(S/N) ratio plot. 

Finally, the regression model proposed in Table 18 can be represented using Eq. (15), which can be used for estimating 

the impact strength of a 3D printed object printed with PEEK. The proposed predictive model is nonlinear or quadratic in 

nature and such model is very rare in the published domain. 

 
Table 19. Objective wise selected process parameter value for optimal performance of the process 

Method Objective PO PDN (%) CT (0C) IS (kJ/m2) PT (min) MU (gm) 

Taguchi Min PT - 80 - - - - 

Taguchi Max IS XZ 100 50 230.4 98 3.64 

Taguchi Min MU - 80 - - - - 

TOPSIS Taguchi All Three XZ 100 50 230.4 98 3.64 

Composite Desirability 

with gradient decent 

method 

 
All Three 

 
XZ 

 
87.70 

 
50 

 
86.5 

 
89 

 
3.26 

 
 

Table 20. Main plot and S/N plot 

Method Objective Main Effects Plot for Means Main Effects Plot for SN ratios 
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Table 20. (cont.) 

Method Objective Main Effects Plot for Means Main Effects Plot for SN ratios 

 

 

 
 

TOPSIS 

Taguchi 

 

 

 

 
All Three 

  
 

5.0 CONCLUSIONS 

The study concludes that higher print density or infill density enhances impact strength of a 3D printed object. However, this 

increases material usage and print time, which increase the manufacturing cost and time as well. PEEK is a costly printing material 

and hence, the consideration of material usage in the process optimization added an extra dimension to the problem. The printing 

time also considered along with the other two response variable for the same process. Finally, the objective of maximization of 

impact strength, minimization of material usage and minimization of printing time is considered for the process optimization. 

Different methods are deployed before process optimization to understand the relation between the process parameters and response 

variables. The correlation analysis and ANOVA indicates that the print density has significant impact on the three response variables. 

The print time and material usage have full positive significant correlation, which indicates there is a proportional relation between 

them. On the other side, the impact strength also has positive significant correlation with print time and material usage, which 

concludes while increasing the impact strength the material usage and printing time is higher. In case of process optimization, the 

three methods Taguchi, TOPSIS Taguchi and Composite desirability based gradient decent methods are deployed. Taguchi method 

fails to find the process parameters value for the objectives minimization of print time and material usage but selects the maximum 

print density of 100%, XZ as print orientation and 500C of chamber temperature. Same process parameter values are selected with the 

TOPSIS based Taguchi method. The Impact strength obtained through is the 230.4 kJ/m2, print time as 98 min and 3.64 gm of material 

usage. The proposed desirability coupled with gradient decent method selects print density as 87.70%, XZ as print orientation and 500C 

of chamber temperature. This parameter setup produces Impact strength of 86.5 kJ/m2, print time of 89 min, whereas 3.26 gm of 

Material usage, which is close to the treatment no. 13 from L18 OA (see Table 3). This definitely produces a printed object with 

comparable less impact strength but results in 9.18% less in printing time and 11.66 % of less material usage. Application wise, a 

minimum and a maximum value range for the impact strength and acceptable range for other response variables can be set for 

composite desirability coupled gradient decent method for obtaining desired results. Finally, the regression equation for predicting the 

impact strength has been proposed for the printed material in the XZ plane, which is useful for predicting the impact strength value. 
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