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Abstract: The research focuses on enhancing the 

classification and detection of Acute Lymphoblastic 

Leukemia (ALL) using deep learning techniques. 

Leveraging a lightweight EfficientNet-B3 model, 

alongside innovative approaches like YoloV5 and 

YoloV8 for detection, the study aims to improve 

diagnostic accuracy and efficiency. ALL, 

characterized by abnormal proliferation of immature 

white blood cells, poses significant challenges in 

diagnosis and treatment. By employing deep learning 

algorithms, the project addresses common issues in 

classification, aiming to overcome poor 

generalization and slow convergence. Evaluation 

metrics including accuracy, precision, recall, and F1-

score are utilized to assess model performance. The 

proposed approach demonstrates promising results, 

with the EfficientNet-B3 model achieving 99% 

accuracy in classifying ALL cells compared to 

traditional transfer learning models. Incorporating 

YoloV5 and YoloV8 for disease detection further 

enhances performance, showcasing the potential of 

advanced deep learning techniques in medical image 

analysis. This research contributes to the ongoing 

efforts in improving diagnostic accuracy and 

treatment outcomes for ALL, offering a robust 

framework for future studies in medical imaging 

analysis. 

Index Terms: Acute lymphoblastic leukemia (ALL), 

efficientnet-B3, CNN, white blood cell image 

classification, deep learning. 

1. INTRODUCTION 

Leukemia, a type of blood cancer characterized by 

the abnormal proliferation of white blood cells 

(WBCs), poses significant challenges in diagnosis 

and treatment. This malignancy originates in the bone 

marrow, where the production of blood cells occurs, 

and can affect both children and adults [1]. The 

immune system, responsible for protecting the body 

against pathogens and foreign substances, becomes 

compromised as cancerous WBCs disrupt normal 

cellular functions [2]. 

Acute leukemia, a rapidly progressing form of the 

disease, manifests in two main types: Acute 

Lymphoblastic Leukemia (ALL) and Acute Myeloid 

Leukemia (AML). ALL primarily affects 

lymphocytes, a type of immature white blood cell, 

leading to their uncontrolled proliferation within the 

bone marrow [3]. Subtypes of ALL, including L1, 

http://www.ijasem.org/


        www.ijasem.org  

            Vol 18, Issue 3, 2024 

 

        ISSN2454-9940 
 

 

 
 
 

460 

L2, and L3, exhibit distinct characteristics in terms of 

cell morphology and genetic alterations [4]. While 

ALL is more prevalent in children, it can also occur 

in adults, albeit less frequently [5]. 

The onset of leukemia, particularly ALL, is insidious, 

often presenting with nonspecific symptoms such as 

fever, fatigue, and bruising. However, as the disease 

progresses and infiltrates multiple organs, patients 

may experience more severe complications, including 

bone pain and neurological deficits [6], [7]. Timely 

diagnosis and treatment are crucial to prevent further 

bone marrow depletion and mitigate life-threatening 

complications associated with leukemia [8]. 

Despite advances in therapeutic strategies, including 

chemotherapy, radiation therapy, and stem cell 

transplantation, managing leukemia remains a 

complex endeavor. Treatment modalities are tailored 

based on individual patient characteristics, such as 

age, overall health status, and disease severity [9]. 

The development of novel therapeutic approaches has 

extended the life expectancy of leukemia patients, 

emphasizing the importance of ongoing research in 

this field [10]. 

Morphological analysis of blood cells plays a pivotal 

role in leukemia diagnosis and classification. Healthy 

cells exhibit distinct characteristics in terms of cell 

and nucleus size, nuclear morphology, and 

cytoplasmic features. Conversely, leukemia cells, 

particularly blast cells characteristic of ALL, display 

aberrant morphological features, posing challenges in 

accurate identification and classification [11]. 

Recent advancements in computational techniques, 

particularly Convolutional Neural Networks (CNNs), 

have revolutionized medical imaging analysis, 

offering unprecedented capabilities in image 

recognition and classification tasks [12]. Transfer 

learning, a technique wherein pre-trained neural 

networks are fine-tuned on specific datasets, has 

facilitated the development of robust classification 

models for medical imaging applications [13]. 

However, the inherent challenges associated with 

leukemia classification, including the subtle 

morphological differences between cancerous and 

normal cells, necessitate further exploration of 

advanced computational methodologies [14]. 

In light of the existing limitations and challenges in 

leukemia diagnosis and classification, this study aims 

to investigate novel computational techniques for 

enhancing the accuracy and efficiency of leukemia 

detection. Leveraging state-of-the-art deep learning 

architectures, including ResNet, VGGnet, and 

Inception, alongside transfer learning strategies, we 

seek to develop a comprehensive framework for 

leukemia classification based on morphological 

analysis of blood cell images [15]. By addressing the 

current gaps in leukemia detection methodologies, 

this research endeavor strives to contribute to the 

advancement of medical imaging analysis and 

improve clinical outcomes for leukemia patients. 

2. LITERATURE SURVEY 

Yeung et al. (2022) provide insights into recent 

discoveries in the molecular pathology of B-cell 

ALL, highlighting their prognostic significance and 

implications for classification. The authors review 

advancements in understanding the genetic and 

molecular underpinnings of B-cell ALL, shedding 
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light on novel therapeutic targets and prognostic 

markers [1]. 

The American Cancer Society (2022) offers valuable 

statistics and insights into the epidemiology of 

leukemia, with a particular focus on acute 

lymphocytic leukemia (ALL). The report outlines key 

statistics related to incidence, prevalence, and 

survival rates, providing a comprehensive overview 

of the disease burden and its impact on public health 

[2]. 

Joshi et al. (2022) investigate the impact of insurance 

status on overall survival in patients with acute 

lymphoblastic leukemia (ALL) using data from the 

Surveillance, Epidemiology, and End Results (SEER) 

database. Their study underscores the importance of 

access to healthcare services and insurance coverage 

in improving outcomes for ALL patients [3]. 

Frey (2022) discusses the approval of brexucabtagene 

autoleucel, a chimeric antigen receptor (CAR) T-cell 

therapy, for adults with relapsed and refractory acute 

lymphocytic leukemia (ALL). The author provides 

insights into the clinical efficacy and safety profile of 

this novel therapeutic approach, highlighting its 

potential as a treatment option for patients with 

limited treatment options [4]. 

McNeer and Schmiegelow (2022) review the 

management of central nervous system (CNS) disease 

in pediatric acute lymphoblastic leukemia (ALL). 

The authors discuss current treatment strategies, 

including intrathecal chemotherapy and cranial 

irradiation, and highlight emerging approaches aimed 

at reducing CNS relapse rates and improving 

outcomes for pediatric ALL patients [5]. 

Stein et al. (2018) report a case of pediatric acute 

lymphoblastic leukemia (ALL) presenting with 

periorbital edema. The authors highlight the 

importance of considering leukemia as a differential 

diagnosis in children presenting with unusual clinical 

manifestations, emphasizing the need for prompt 

diagnosis and treatment to prevent disease 

progression [6]. 

Ahmed and Ahmed (2022) evaluate the serum levels 

of lymphoid enhancer-binding factor-1 (LEF-1) and 

its association with clinico-hematological parameters 

in pediatric patients with acute lymphoblastic 

leukemia (ALL). Their study provides insights into 

the potential utility of LEF-1 as a prognostic 

biomarker and its correlation with disease severity 

and treatment outcomes [7]. 

Amin et al. (2021) propose 3D semantic deep 

learning networks for leukemia detection, leveraging 

advanced deep learning techniques for automated 

analysis of medical imaging data. Their study 

demonstrates the potential of deep learning 

algorithms in improving the accuracy and efficiency 

of leukemia diagnosis, offering a promising avenue 

for future research in this field [11]. 

3. METHODOLOGY 

a) Proposed Work: 

The proposed work introduces a comprehensive 

solution aimed at enhancing leukemia cell 

classification accuracy and efficiency through the 

integration of advanced deep learning techniques and 

user-friendly interface components. Leveraging the 

EfficientNet-B3[38] architecture and depthwise 

separable convolutions, the model offers a 
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lightweight yet powerful framework for processing 

large image datasets. Evaluation on public datasets, 

utilizing metrics such as accuracy, precision, recall, 

and f1-score, ensures the effectiveness and 

generalization of the proposed system. 

Furthermore, the integration of state-of-the-art YOLO 

techniques, including YOLOv5 and YOLOv8, 

significantly improves object detection performance, 

achieving an impressive 97% mAP (mean Average 

Precision). This heightened accuracy is particularly 

valuable for fine-grained object detection tasks in 

leukemia white blood cell images.  

Moreover, the implementation of a Flask-based front 

end enhances user engagement by providing a user-

friendly interface, simplifying the testing process for 

the model. Additionally, robust system security is 

ensured through authentication integration, allowing 

for controlled access and safeguarding sensitive 

medical data.  

Collectively, these elements create a comprehensive 

solution poised for real-world deployment, offering 

both accuracy and usability in medical imaging 

applications. 

b) System Architecture: 

 

Fig 1 Proposed Architecture 

The system architecture of the project, named 

Lightweight EfficientNetB3 Model Based on 

Depthwise Separable Convolutions for Enhancing 

Classification of Leukemia White Blood Cell Images, 

begins with dataset input, where leukemia white 

blood cell images are processed. The processed 

images are then fed into various deep learning 

models, including VGG19[36], Xception, 

ResNet50[37], EfficientNetB0[38], and the proposed 

lightweight EfficientNetB3 model. Additionally, 

extensions such as YOLOv5 and YOLOv8 are 

integrated for object detection tasks. Each model's 

performance is evaluated based on metrics such as 

mean Average Precision (mAP), precision, and recall 

to assess their effectiveness in classifying leukemia 

cells. The Lightweight EfficientNetB3 model, 

leveraging depthwise separable convolutions, stands 

out for its superior performance and efficiency in 

accurately classifying leukemia white blood cell 

images, demonstrating its potential as a valuable tool 

in medical image analysis and diagnosis. 

c) Dataset: 

The dataset utilized for this study consists of images 

with dimensions of 450 × 450 pixels. To ensure 

uniformity and compatibility with the deep learning 

model, the images were resized using TensorFlow's 

crop function, specifically 

tf.image.crop_and_resize(), resulting in a reduced 

resolution of 300 × 300 pixels. 

Furthermore, to facilitate effective model training and 

performance optimization, the images underwent 

Min-Max normalization. This normalization 

technique rescales the pixel values within the range 
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of 0 to 1. Mathematically, each pixel's normalized 

value is calculated as follows: 

Pixel_normalized = (pixel - min_pixel_value) / 

(max_pixel_value - min_pixel_value) 

Here, min_pixel_value and max_pixel_value 

represent the minimum and maximum pixel values 

present in the image, respectively. By normalizing 

the pixel values in this manner, the dataset ensures 

consistency and standardization across all images, 

enabling more effective training and interpretation by 

the deep learning model. 

Overall, these preprocessing steps ensure that the 

dataset is appropriately prepared for subsequent 

analysis and model training, ultimately enhancing the 

accuracy and efficiency of leukemia cell detection 

tasks. 

 

Fig 2 Dataset 

d) Image Processing: 

Image Processing using ImageDataGenerator: 

Re-scaling the Image:Rescale the pixel values of the 

image to be between 0 and 1. This is achieved by 

dividing each pixel value by 255. 

Shear Transformation: Apply shear transformation to 

the image, which involves shifting one part of the 

image along the horizontal or vertical axis. This 

introduces variability and deformation to the image. 

Zooming the Image: Perform zooming on the image, 

scaling it either up or down along its dimensions. 

This augmentation technique alters the perspective of 

the image and exposes the model to a wider range of 

object sizes. 

Horizontal Flip: Flip the image horizontally, creating 

a mirror image. This augmentation technique helps 

the model learn invariant features and improves its 

ability to generalize to images with different 

orientations. 

Reshaping the Image:If necessary, reshape the image 

to the desired dimensions. This ensures all images 

have consistent sizes and are compatible with the 

model architecture. 

Torchvision-based Processing for Detection: 

Resizing the Image: Resize the image to the desired 

input dimensions required by the detection model. 

This ensures consistency in input size across all 

images. 

Random Horizontal Flip:Randomly flip the image 

horizontally with a certain probability. This 

augmentation technique helps expose the model to 

variations in object orientation and improves its 

robustness. 

Random Rotation:Apply random rotation to the 

image within a specified range. This introduces 

variability in object orientation and helps the model 

learn to detect objects at different angles. 
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Normalization:Normalize the pixel values of the 

image to have zero mean and unit variance. This 

ensures numerical stability during model training and 

helps improve convergence. 

ToTensor Conversion:Convert the image to a 

PyTorch tensor. This prepares the image data for 

input into the detection model, which typically 

expects tensors as input. 

By following these stepwise image processing 

techniques, we can effectively preprocess the image 

data for subsequent tasks such as classification or 

object detection. 

e) Algorithms: 

VGG19: Utilizes a deep architecture with 19 layers, 

characterized by its simple and uniform structure.[36] 

It comprises multiple convolutional layers followed 

by max-pooling layers and fully connected layers, 

allowing for effective feature extraction. However, its 

depth may result in a higher computational cost. 

 

Fig 3 VGG19 

Xception: An extension of the Inception architecture, 

Xception employs depthwise separable convolutions 

to capture spatial and channel-wise dependencies 

efficiently. By replacing standard convolutional 

layers, it aims to enhance feature extraction while 

reducing computational complexity. 

 

Fig 4 Xception 

ResNet50: Belonging to the ResNet family, 

ResNet50 introduces skip connections to address the 

vanishing gradient problem.[37] These residual 

connections allow the network to bypass certain 

layers, enabling the capture of intricate features 

effectively. 

 

 

Fig 5 ResNet50 

EfficientNetB0: Part of the EfficientNet family, 

EfficientNetB0 implements compound scaling to 

balance depth, width, and resolution.[38] This 

architecture achieves high performance with fewer 

parameters, ensuring computational efficiency 

without compromising accuracy. 
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Fig 6  EfficientNetB0 

EfficientNetB3: Augments EfficientNetB3 with 

additional fully connected layers for fine-tuning and 

customization. [38] These extra layers adapt the 

network's learned features to the specific task of 

leukemia white blood cell classification, potentially 

improving performance. 

 

Fig 7 EfficientNetB3 

YoloV5x6: YOLOv5 is an upgraded version of the 

YOLO architecture, featuring improvements in model 

design, training methodology, and performance. It 

employs a single-stage object detection approach, 

predicting bounding boxes and class probabilities 

directly from the full image. YOLOv5 achieves high 

accuracy and efficiency, making it suitable for real-

time applications. 

 

Fig 8 YoloV5x6 

YOLOv8: YOLOv8, also known as YOLOv4-tiny, is 

a lightweight version of the YOLOv4 model. It 

focuses on reducing model size and computational 

complexity while maintaining competitive 

performance. YOLOv8 utilizes a smaller network 

architecture and fewer parameters compared to its 

predecessors, making it more suitable for resource-

constrained environments or applications where 

computational resources are limited. 

 

Fig 9 YoloV8 

4. EXPERIMENTAL RESULTS 

Precision: Precision evaluates the fraction of 

correctly classified instances or samples among the 

ones classified as positives. Thus, the formula to 

calculate the precision is given by: 
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Precision = True positives/ (True positives + False 

positives) = TP/(TP + FP) 

 

 

Fig 10 Precision Classification Graph 

Recall:Recall is a metric in machine learning that 

measures the ability of a model to identify all 

relevant instances of a particular class. It is the ratio 

of correctly predicted positive observations to the 

total actual positives, providing insights into a 

model's completeness in capturing instances of a 

given class. 

 

 

Fig 11 Recall Classification Graph 

F1-Score:F1 score is a machine learning evaluation 

metric that measures a model's accuracy. It combines 

the precision and recall scores of a model. The 

accuracy metric computes how many times a model 

made a correct prediction across the entire dataset. 

 

 

Fig 12  F1 Score Classification Graph 

Accuracy: The accuracy of a test is its ability to 

differentiate the patient and healthy cases correctly. 

To estimate the accuracy of a test, we should 

calculate the proportion of true positive and true 

negative in all evaluated cases. Mathematically, this 

can be stated as: 

 Accuracy = TP + TN TP + TN + FP + FN. 
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Fig 13 Accuracy Classification Graph 

mAP: Mean Average Precision (MAP) is a ranking 

quality metric. It considers the number of relevant 

recommendations and their position in the list. MAP 

at K is calculated as an arithmetic mean of the 

Average Precision (AP) at K across all users or 

queries.  

 

 

Fig 14  mAP Classification Graph 

 

Fig 15  Precision Classification Graph – Detection 

 

Fig 16  Recall Classification Graph – Detection 
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Fig 17 Performance Evaluation Table - Classification 

 

Fig 18  Performance Evaluation Table – Detection 

 

Fig 19  Home Page 

 

Fig 20  Registration Page 

 

Fig 21 Login Page 

 

Fig 22 For Classification 

 

Fig 23 Upload Input Image 
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Fig 24 Predicted Results 

 

Fig 25 For Detection 

 

Fig 26 Upload Input Image 

 

Fig 27 Final Outcome 

5. CONCLUSION 

In conclusion, the proposed lightweight EfficientNet-

B3 model, augmented with depthwise separable 

convolutions, emerges as a robust solution for 

accurately classifying acute lymphoblastic leukemia 

(ALL) cells. Its superior performance surpasses 

existing benchmark deep learning classifiers, offering 

efficient feature extraction and classification 

capabilities. The model's ability to achieve high 

accuracy while maintaining efficiency, owing to its 

reduced trainable parameters, makes it practical and 

cost-effective for real-world deployment in medical 

imaging applications. 

Furthermore, the evaluation of the EfficientNet-

B3[58] model using various metrics confirms its 

effectiveness and generalization, ensuring reliable 

identification of leukemia cells while minimizing 

false positives and false negatives. Additionally, 

YOLOv5 and YOLOv8 models exhibit remarkable 

performance in object detection tasks, particularly in 

detecting leukemia cells, showcasing their 

effectiveness in leukemia classification. 

The integration of a user-friendly Flask interface, 

along with secure authentication, enhances the 

overall user experience and facilitates seamless 

system testing. This interface simplifies data input for 

evaluation, enabling easy interaction with the system. 

Moreover, secure authentication ensures controlled 

access, safeguarding sensitive data and maintaining 

system integrity. Overall, the proposed solution offers 

a comprehensive framework for leukemia 

classification, combining advanced deep learning 

models with user-friendly interfaces for efficient and 

reliable performance in medical imaging analysis. 

 

6. FUTURE SCOPE 

In the future, research can delve into incorporating 

explainable AI techniques like SHAP (SHapley 

Additive exPlanations) to offer insights into the 

decision-making process of lightweight models such 
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as EfficientNet-B3 and other pre-trained deep 

learning classifiers for leukemia detection. This 

approach would enhance transparency, aiding 

practitioners in understanding and trusting the 

model's predictions, while also identifying areas for 

refinement. 

Exploration of novel deep learning models holds 

promise for improving leukemia classification 

performance. Experimentation with different 

architectures, optimization techniques, and data 

augmentation strategies can lead to higher accuracy 

and robustness in detecting leukemia from medical 

images. 

Fine-tuning hyperparameters, such as hidden layer 

count and activation functions, can further enhance 

model efficiency and classification accuracy. 

Addressing current limitations, including data 

scarcity and class imbalance, while ensuring model 

interpretability and generalization to diverse patient 

populations, is crucial for advancing the reliability 

and applicability of deep learning classifiers in 

leukemia detection. 

Rigorous validation studies involving real-world 

patient data are essential to assess the proposed 

models' performance and clinical utility accurately. 

Conducting such studies in clinical research settings 

will provide valuable insights into the model's 

effectiveness as a diagnostic tool for leukemia 

detection. 
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