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Abstract 

This study proposes an LSTM-based time series demand forecasting model for optimizing e-commerce supply 

chain management. Utilizing transaction data from a UK-based online retailer between December 2010 and 

December 2011, the model aims to predict future product demand and improve inventory management. The 

dataset, sourced from the UCI Machine Learning Repository, contains sales records across multiple product 

categories, providing a rich basis for demand forecasting. Performance evaluation of the model shows strong 

predictive accuracy with low error values: RMSE = 5.2, MAE = 3.8, and MAPE = 12.5. The proposed LSTM 

model effectively captures seasonal demand fluctuations, offering valuable insights for inventory optimization. 

This research contributes to the field of supply chain management by introducing an efficient forecasting approach 

to mitigate overstock and stockout risks. 

Keywords: Time Series Forecasting, E-Commerce, LSTM, Demand Forecasting, Supply Chain Management, 

Inventory Optimization. 

1. Introduction 

1.1. Background & Motivation 

The rapid digitalization of banking services has significantly increased transaction volumes, leading to a surge in 

fraudulent activities[1]. Traditional rule-based fraud detection systems often fail to adapt to evolving fraudulent 

patterns[2]. With the rise of machine learning and deep learning techniques, advanced fraud detection models 

have been developed to identify anomalous transactions[3]. Among these, Long Short-Term Memory (LSTM) 

networks have demonstrated superior performance in capturing sequential dependencies in financial 

transactions[4]. However, the challenge remains in effectively utilizing LSTM forecasting for real-time fraud 

detection[5]. 

1.2. Significance of the Study 

Recent studies have highlighted the limitations of conventional statistical models in detecting complex fraud 

patterns[6]. Machine learning-based anomaly detection methods have gained prominence, but many suffer from 

high false positive rates[7]. This study proposes an LSTM-based anomaly detection system for financial 

transactions, focusing on improving prediction accuracy and minimizing false alarms[8]. The approach leverages 

time-series forecasting to distinguish between normal and fraudulent transaction behaviors effectively[9]. 

1.3. Limitations of Existing Approaches 

Traditional fraud detection methods rely on predefined rules and static thresholds, making them ineffective against 

novel fraud schemes[10]. While conventional machine learning models such as decision trees and support vector 

machines have been employed, their reliance on handcrafted features limits their adaptability[11]. Deep learning 

techniques, particularly convolutional neural networks (CNNs), have been explored, but their inability to capture 

temporal dependencies restricts their efficacy[12]. Furthermore, hybrid models integrating deep learning with 

statistical techniques have demonstrated promise but require substantial computational resources, limiting real-

time applicability[13]. 

2. Related Article 

2.1. Traditional Approaches in the Field 
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Fraud detection in banking has traditionally relied on rule-based systems, statistical anomaly detection, and 

supervised machine learning techniques[14]. Statistical models, such as logistic regression, have been widely used 

due to their interpretability but often fail to detect sophisticated fraud schemes[15]. Supervised learning 

approaches, including decision trees and random forests, have been employed but require labeled datasets, which 

are often imbalanced and lead to biased learning[16]. 

2.2. Recent Advances and Emerging Techniques 

Recent advancements in deep learning have introduced models capable of learning intricate patterns from 

transactional data. Autoencoders have been employed for unsupervised anomaly detection, allowing fraud 

identification without labeled data. Recurrent Neural Networks (RNNs), particularly LSTM networks, have been 

increasingly utilized for their ability to capture sequential dependencies in financial transactions. Additionally, 

transformer-based architectures have demonstrated potential in processing sequential data with improved 

efficiency[17]. 

2.3. Comparative Analysis of Existing Work 

A comparative analysis of existing fraud detection techniques reveals significant trade-offs. While rule-based and 

statistical models offer high interpretability, they lack adaptability to new fraud trends. Traditional machine 

learning models perform well with structured datasets but struggle with real-time fraud detection due to high 

computational costs. Deep learning models, such as LSTM and CNN, excel in learning complex data 

representations but require extensive training and computational resources. Hybrid models combining multiple 

techniques have shown improvements but remain limited by the need for extensive hyperparameter tuning[18]. 

2.4. Research Gaps & Challenges 

Despite progress in deep learning-based fraud detection, several challenges remain unaddressed. Many existing 

models suffer from high false positive rates, leading to unnecessary transaction rejections. The scalability of deep 

learning approaches for real-time fraud detection remains an issue due to high computational requirements[19]. 

Additionally, adversarial attacks pose security risks, necessitating the development of robust fraud detection 

frameworks. Addressing these challenges is critical to ensuring accurate and efficient fraud detection in banking 

transactions. 

2.5. Problem Statement 

I. Key Challenges in the Field 

Traditional fraud detection approaches struggle with identifying subtle and evolving fraudulent patterns in 

financial transactions. Rule-based and supervised machine learning models require extensive feature engineering 

and labeled datasets, which are often imbalanced. Furthermore, existing deep learning techniques fail to provide 

real-time fraud detection without incurring significant computational overhead. An LSTM-based fraud detection 

framework leveraging time-series forecasting can address these limitations by capturing temporal dependencies 

in transaction data[20]. This approach enhances fraud detection accuracy while reducing false positives. The 

proposed method aims to integrate LSTM forecasting with anomaly detection mechanisms to achieve efficient 

real-time fraud detection. 

2.6. Research Objectives 

• Develop an LSTM-based anomaly detection model for banking fraud detection. 

• Improve fraud detection accuracy while minimizing false positives. 

• Implement a time-series forecasting approach to identify anomalous transactions. 

• Enhance model scalability and efficiency for real-time applications. 

• Evaluate and compare the proposed model against existing fraud detection technique. 

3. Methodology 

The proposed methodology follows a structured workflow for demand forecasting in e-commerce supply chain 

management. It begins with data collection from historical transaction records, followed by data preprocessing to 

clean and normalize the dataset. Exploratory Data Analysis (EDA) uncovers patterns and trends before feeding 

the refined data into an LSTM-based model for training. The trained model undergoes evaluation using 

performance metrics, ensuring accuracy before generating the final demand forecasting output for decision-

making. This structured pipeline optimizes forecasting accuracy and inventory planning. (Figure 1: Architecture 

Diagram). 
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Figure 1: Architecture Diagram 

 

3.1. Data Preprocessing 

Data preprocessing involves cleaning and transforming raw datasets to ensure high-quality input for the LSTM 

model. Missing values are handled through mode imputation for categorical data and mean or median imputation 

for numerical data. Feature engineering techniques such as moving average smoothing and lag feature creation 

help capture time-dependent trends in sales data. Finally, data normalization using Min-Max scaling ensures that 

all features are on the same scale, improving model performance. 

3.1.1. Handling Missing Values: 

Missing values in numerical features are replaced using mean or median imputation, while categorical variables 

are handled with mode imputation. This prevents the loss of valuable data and ensures smooth training without 

introducing biases from missing entries. Proper handling of missing values enhances the reliability of time-series 

forecasting models. 

3.1.2. Feature Engineering: 

Feature engineering improves predictive performance by extracting relevant information from raw data. Moving 

average smoothing reduces noise in sales trends, making it easier for LSTM models to learn long-term 

dependencies. Lag features create time-shifted versions of the data, allowing the model to recognize past 

dependencies crucial for accurate demand forecasting. 

o Moving Average Smoothing: 

𝑀𝐴𝑡 =
1

𝑁
∑𝑋𝑡−𝑖

𝑁−1

𝑖=0

 

where 𝑀𝐴𝑡 is the moving average at time 𝑡, 𝑋𝑡 is the original sales value, and 𝑁 is the window size. 

o Lag Features for Time-Series: 

𝑋𝑡 , 𝑋𝑡−1, 𝑋𝑡−2, … , 𝑋𝑡−𝑛 

3.1.3. Data Normalization (Min-Max Scaling): 

Normalization ensures that all numerical features fall within a specific range, preventing large-scale values from 

dominating the learning process. Min-Max scaling transforms the dataset into a range of [0,1], allowing the LSTM 

model to converge faster during training and improve overall predictive accuracy. 

𝑋′ =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

 

Where 𝑋′ is the scaled value, 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥  are the minimum and maximum values in the dataset. 

3.2. Exploratory Data Analysis (EDA) 

EDA helps identify patterns, seasonality, and anomalies in the dataset before model training. Visualization 

techniques such as line plots and rolling mean calculations provide insights into historical trends. Statistical 
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techniques like autocorrelation functions (ACF) and partial autocorrelation functions (PACF) help detect 

relationships between past and future data points. 

3.2.1. Sales Trend Visualization 

Time-series line plots illustrate how sales fluctuate over time, helping identify patterns such as increasing, 

decreasing, or seasonal trends. Rolling mean smoothing further clarifies long-term patterns by averaging out short-

term fluctuations, making trends more apparent to the LSTM model. 

o Line Plot: 

𝑆𝑡 = 𝑓(𝑡) 
where 𝑆𝑡 represents sales over time. 

o Rolling Mean (Smoothing): 

𝑅𝑡 =
1

𝑤
∑ 𝑋𝑖

𝑡

𝑖=𝑡−𝑤

 

where 𝑤 is the rolling window size. 

3.2.2. Seasonality Detection 

Seasonality represents periodic patterns in sales data, such as increased purchases during holidays. Fourier 

transform methods decompose time-series data into periodic components, helping detect seasonal effects that 

influence future sales. Identifying seasonality ensures the LSTM model can incorporate these repeating patterns 

into predictions. 

o Fourier Transform to identify periodic components: 

𝑋𝑡 = ∑[𝑎𝑘 cos (
2π𝑘𝑡

𝑁
) + 𝑏𝑘 sin (

2π𝑘𝑡

𝑁
)]

𝑁

𝑘=1

 

where 𝑎𝑘 and 𝑏𝑘 are Fourier coefficients. 

3.2.3. Outlier Detection using Z-score: 

Outliers are detected using Z-score analysis, where values beyond three standard deviations from the mean are 

flagged as anomalies. Removing or adjusting outliers prevents extreme values from distorting model training, 

ensuring reliable demand forecasting. Proper outlier detection maintains data consistency and reduces prediction 

errors. 

o Z-score formula: 

𝑍 =
𝑋 − μ

σ
 

where 𝜇 is the mean and 𝜎 is the standard deviation. 

o Values outside the range |𝑍| > 3 are considered outliers. 

3.2.4. Autocorrelation Analysis (ACF & PACF): 

Autocorrelation functions measure how past values influence future data points, helping identify important lag 

features. Partial autocorrelation functions remove indirect dependencies to reveal direct relationships between 

sales at different time steps. ACF and PACF plots guide the selection of appropriate lag values for LSTM models. 

o Autocorrelation Function (ACF): Measures correlation between lagged values. 

𝐴𝐶𝐹(𝑘) =
∑ (𝑋𝑡 − μ)(𝑋𝑡−𝑘 − μ)𝑁
𝑡=𝑘+1

∑ (𝑋𝑡 − μ)2𝑁
𝑡=1

 

o Partial Autocorrelation Function (PACF): Identifies direct correlations by removing indirect 

dependencies. 

3.3. LSTM-Based Time Series Forecasting 
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LSTM networks handle long-term dependencies in time-series data by maintaining memory through gating 

mechanisms. Unlike traditional models, LSTM efficiently captures sequential patterns in historical sales, 

improving demand forecasting accuracy. The architecture consists of multiple gates controlling how information 

is stored, updated, and forgotten. 

3.3.1. LSTM Network Architecture & Equations 

LSTM processes sequences of past sales to predict future demand. 

1. Input Sequence: 

o 𝑋𝑡 = [𝑋𝑡−1, 𝑋𝑡−2, … , 𝑋𝑡−𝑛] (Past transactions) 

o Output: Predicted demand �̂�𝑡+1 

2. LSTM Memory Cell Equations: 

o Forget Gate: Decides what information to discard. 

𝑓𝑡 = σ(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑓) 

o Input Gate: Decides what new information to store. 

𝑖𝑡 = σ(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑖) 
o Candidate Cell State: Computes new candidate values. 

𝐶�̃� = tanh(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝐶) 
o Cell State Update: 

𝐶𝑡 = 𝑓𝑡 ⊙𝐶𝑡−1 + 𝑖𝑡 ⊙𝐶�̃� 
o Output Gate: Controls final output. 

𝑜𝑡 = σ(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑜) 
o Final Hidden State Output: 

ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝐶𝑡) 
where: 

• 𝜎 = Sigmoid activation 

• tanh = Hyperbolic tangent activation 

• ⊙ = Element-wise multiplication 

3.4. Model Training & Optimization 

Training an LSTM model involves minimizing error between predicted and actual sales using an appropriate loss 

function. Optimization techniques like Adam optimizer help adjust model weights to improve accuracy. 

Hyperparameter tuning ensures the best combination of network layers and learning rates. 

3.4.1. Loss Function: 

The Mean Squared Error (MSE) loss function calculates the difference between predicted and actual values, 

penalizing larger errors more significantly. Alternatively, Huber loss provides robustness against outliers by 

applying a squared penalty for small errors and a linear penalty for large deviations. 

o Mean Squared Error (MSE): 

𝐿 =
1

𝑁
∑(𝑌𝑖 − 𝑌�̂�)

2
𝑁

𝑖=1

 

3.4.2. Optimization Techniques: 

The Adam optimizer combines momentum and adaptive learning rate techniques to enhance convergence speed. 

It computes moving averages of gradients and adjusts step sizes dynamically, ensuring stable and efficient model 

training. Adam’s adaptive approach prevents oscillations and improves forecasting performance. 

o Adam Optimizer: 
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𝑚𝑡 = β1𝑚𝑡−1 + (1 − β1)𝑔𝑡 
𝑣𝑡 = β2𝑣𝑡−1 + (1 − β2)𝑔𝑡

2 

𝑚�̂� =
𝑚𝑡

1 − β1
𝑡 ,  𝑣�̂� =

𝑣𝑡

1 − β2
𝑡  

θ𝑡 = θ𝑡−1 −
α𝑚�̂�

√𝑣�̂� + ϵ
 

where:  

o 𝑔𝑡 is the gradient 

o 𝛼 is the learning rate 

o β1, β2 are decay rates 

4. Results and Discussion 

4.1. Dataset Description 

The E-Commerce Data dataset contains actual transaction records from a UK-based online retailer between 

December 2010 and December 2011. It includes invoice details, product descriptions, quantities, timestamps, and 

customer IDs. The dataset primarily consists of wholesale and retail transactions for unique all-occasion gifts. 

Sourced from the UCI Machine Learning Repository, this dataset facilitates time series forecasting, clustering, 

and classification analyses. It serves as a valuable resource for studying consumer purchasing behavior, demand 

forecasting, and supply chain optimization. The dataset was provided by Dr. Daqing Chen of London South Bank 

University. 

4.2. Performance Metrics: 

The image displays a bar chart comparing three error metrics: RMSE (Root Mean Squared Error), MAE (Mean 

Absolute Error), and MAPE (Mean Absolute Percentage Error). RMSE is represented by a blue bar with a value 

of 5.2, MAE by an orange bar with a value of 3.8, and MAPE by a green bar with a value of 12.5. Each bar is 

annotated with its respective value. The y-axis represents the value of the error metrics, while the x-axis labels the 

three metrics. This chart helps visualize the comparison of different error measures in a clear and concise manner, 

aiding in performance analysis. Figure 2. 

 

Figure 2: RMSE, MAE, and MAPE 

This graph shows the demand trends for five product categories (Home Decor, Kitchenware, Clothing & 

Accessories, Toys, and Stationery) from December 2010 to December 2011. The quantity sold for each category 

is represented by colored spikes, with Home Decor consistently showing the highest sales, followed by other 

categories with varying peaks throughout the year. 
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Figure 3: Demand Trend by Category 

This graph illustrates the demand trends for five product categories (Home Decor, Kitchenware, Clothing & 

Accessories, Toys, and Stationery) from December 2010 to December 2011. The sales volume for each category 

is represented by colored spikes, with Home Decor consistently showing the highest sales, while other categories 

display fluctuating peaks throughout the year. 

 

Figure 3: Actual vs. Predicted Demand 

This graph illustrates the demand trends for five product categories (Home Decor, Kitchenware, Clothing & 

Accessories, Toys, and Stationery) from December 2010 to December 2011. The sales volume for each category 

is represented by colored spikes, with Home Decor consistently showing the highest sales, while other categories 

display fluctuating peaks throughout the year. 

5. Conclusion 

In this paper, we proposed a Long Short-Term Memory (LSTM)-based model for demand forecasting to optimize 

e-commerce supply chain management. The model was trained on transaction data from a UK-based online 

retailer, with performance evaluated using key metrics such as RMSE, MAE, and MAPE. The results show that 

the LSTM model effectively captures the temporal patterns in demand, providing highly accurate predictions. The 

model's ability to predict future demand with low error metrics demonstrates its potential to improve inventory 

management, reduce stockouts, and prevent overstock situations. 

However, there are some limitations to consider. The model's performance could be further enhanced by 

incorporating additional features such as promotional campaigns, pricing strategies, and customer demographics. 

Additionally, integrating external factors like market trends and economic conditions could improve the model’s 

robustness in forecasting under different circumstances. Future work should explore the inclusion of these factors 

and investigate the potential of hybrid models combining LSTM with other machine learning techniques for 

enhanced prediction accuracy. 

The proposed methodology offers practical value to e-commerce retailers by facilitating demand forecasting and 

optimizing supply chain operations. By integrating such a model into the supply chain workflow, retailers can 

achieve better alignment between demand and inventory, thereby enhancing operational efficiency and customer 

satisfaction. 
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