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ABSTRACT  
In this research, we provide a new method for 

automatically detecting road damage using deep 

learning and photos taken by Unmanned Aerial 

Vehicles (UAVs). For a transportation system that is 

both safe and sustainable, road infrastructure 

maintenance is vital. But gathering information on 

road deterioration by hand may be dangerous and 

time-consuming. So, to greatly enhance the efficacy 

and precision of road damage identification, we 

advise using UAVs and AI technology. We provide a 

method that detects and localizes objects in UAV 

photos using three algorithms: YOLOv4, YOLOv5, 

and YOLOv7. We put these algorithms through their 

paces using two datasets: one from Spain and one 

from China, the RDD2022. The experimental 

findings show that our method is effective, with a 

mean average accuracy of 59.9% for the YOLOv7 

version and 73.20% for the Transformer Prediction 

Head model. These findings open the door to further 

study into the use of unmanned aerial vehicles 

(UAVs) and deep learning for automated road 

damage identification. Term Index: unmanned aerial 

vehicle, object identification, deep learning, road 

damage detection. I.  

INTRODUCTION  
For a nation's economy to grow, its road maintenance 

infrastructure must be well-managed. To keep roads 

in good repair and safe for drivers, regular 

inspections are required. Historically, this task has 

been handled manually by public or commercial 

organizations using cars equipped with a variety of 

sensors to identify road degradation. On the other 

hand, human operators run the risk of injury, 

expense, and length of time while using this 

approach. To overcome these obstacles, scientists and 

engineers are automating the process using 

Unmanned Aerial Vehicles (UAVs) and Artificial 

Intelligence (AI). Halil Ersin Soken was the associate 

editor who oversaw the manuscript's evaluation and 

gave final approval for publishing. end of detecting 

road damage. There has been a recent uptick in 

research into developing efficient and cost-effective 

solutions for road damage identification utilizing 

UAVs and deep learning-based techniques. Aerial 

inspections of things and settings in urban areas are 

only one of many uses for the adaptable unmanned 

aerial vehicles. Due to their many benefits over more 

conventional approaches, they have found 

widespread application in road inspections. These 

vehicles can survey the road surface from all angles 

and heights thanks to their high-resolution cameras 

and other sensors, which provide a complete picture 

of the road's state. There is less need for manual 

inspections—which may be risky for human 

operators—because UAVs can cover a lot of ground 

fast. Therefore, engineers and academics have taken a 

keen interest in the possibility of using UAVs for 

road inspections. An efficient and cost-effective 

method for detecting road damage may be developed 

by combining unmanned aerial vehicles (UAVs) with 

artificial intelligence methods like deep learning. It is 

often said to be used for urban inspections of roofs 

[2], vegetation [3], urban settings [4], and swimming 

pools [5]. Manual road condition checks are still the 

norm in Spain, with inspectors physically walking the 

roads in search of problems. The method's hefty price 

tag reflects the fact that it requires human work as 

well as task-specific cameras and sensors. An expert 

is responsible for making the decisions on fixing road 

problems. China, on the other hand, has an extensive 

system of roads and highways that are vulnerable to 

surface cracks and precipitation infiltration. These 

factors might hasten the roads' degradation and 

endanger drivers and passengers. Vehicles are more 

likely to experience excessive wear and tear and an 

increase in the probability of traffic accidents without 

prompt identification and the quick availability of 

data on road problems, which may result in additional 

financial losses. Consequently, several academic 

institutions are working together to discover efficient 

answers to the growing problem of developing 
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automated methods for identifying road damage. 

Researchers are actively working on automatic road 

damage detection systems that use a variety of 

approaches, including vibration sensors, Light 

Detection and Ranging (LiDAR) sensors, and image-

based algorithms, to identify and map different kinds 

of road damage [6]. The accuracy of damage 

detection is typically enhanced by combining these 

strategies. Several kinds of road deterioration may be 

identified using image-based methods that use 

machine learning algorithms, such deep learning. A 

dataset of images is usually necessary for these 

methods. These images can come from a variety of 

sources, such as top-down photos, images taken by 

drones, mobile devices, satellite image platforms, 

thermal images, and even 3D or stereo vision of the 

asphalt surface. Drone footage, in-car cameras, and 

satellite photos are just a few of the many sources of 

data used to train the model in recent research. 

Various forms of road damage, including as potholes, 

cracks, and rutting, are often labeled in these datasets 

to aid in the learning process. By adding labels to 

these photos, the algorithm can train itself to 

correctly identify and categorize different kinds of 

road damage. To better detect and repair various 

forms of road damage, researchers may improve the 

accuracy and reliability of their models by using a big 

and varied dataset.  

 

THE ROAD DAMAGE DETECTION 

DATASET  
The IEEE BigData Cup 2022 included the 

Crowdsensing-based Road Damage Detection 

Challenge (CRDDC) [13], an event that aimed to 

encourage the development of automated methods for 

detecting road damage. Japan, India, Norway, the 

Czech Republic, the US, and China are all 

participating in this global competition using a 

released dataset of 47,420 road pictures. Road 

damage, such as potholes, alligator cracks, transverse 

cracks, and longitudinal cracks, totaling more than 

55,000 incidences, has been marked with. The 

mission of CRDDC is to promote the research and 

development of automated road damage detection 

and classification systems that use deep learning. The 

RDD2022 dataset may be used by road organizations 

and municipalities to automatically monitor road 

conditions at a cheap cost. Researchers in the fields 

of computer vision and machine learning may also 

use the dataset to compare how various algorithms 

perform in similar image-based tasks, such object 

recognition and classification. While some groups 

omitted the China Drone data from their models, 

others relied on the RDD2022 dataset. Organizations 

like these rely on YOLOv5, YOLOv7, YPLNet, and 

Faster RCNN-series models as their primary 

algorithms. Image patch schemes, attention modules, 

individualized anchor boxes, and ensemble models 

trained with several layers of augmentations were 

some of the methods utilized by many businesses to 

improve the accuracy of their models. Image 

enhancements, label smoothing, coordinate 

attentions, cutting Norway photos to isolate road 

regions, and training country-specific models 

utilizing data from all nations are some of the other 

strategies. Section B: The Hey-Lo-Series You Only 

Look Once (YOLO) is supposedly one of the most 

popular object identification algorithms according to 

what's in the books. There have been many releases 

of this object detecting method, which has gained 

popularity. There has been a noticeable shift in 

detection time when comparing the development of 

all the YOLO series. In the first publication [14] 

Devices with limited computing power can execute 

the YOLO since it just requires a single back-

propagation neural network to produce a forecast. 

This approach has been refined several times since its 

foundational version was built on AlexNET. The 

YOLO algorithm's history includes both YOLOv3 

[15] and YOLOv4 [16]. Overall, both YOLOv3 and 

YOLOv4 rely on deep learning to identify objects, 

but YOLOv4 outshines YOLOv3.  

To enhance its accuracy, YOLOv4 has been trained 

on a huge dataset of photos and videos and tuned for 

real-time object recognition. To further improve its 

speed, YOLOv4 incorporates new methods including 

DropBlock and Mosaic data augmentation. When it 

comes to YOLO, YOLOv4 is the most up-to-date and 

accurate version that will be available until 2021. To 

identify objects in photos and videos, it employs a 

custom-designed neural network architecture that 

combines convolutional and transposed convolutional 

layers. After being trained on a massive dataset of 

photos and videos, YOLOv4 was fine-tuned for 

object recognition in real-time. Later on, YOLOv5 

[17]—the algorithm's fifth version—was revealed. 

Although it still has a ways to go before reaching the 

level of refinement shown in the 5th major update, 

this algorithm has proven to be an ideal model, 

expanding our possibilities in terms of picture 

segmentation highlight. There was a lot of effort put 

into YOLOv4, and all the subtleties were considered, 

and the outcomes are very comparable. After 

YOLOv4, YOLOv5 is a huge upgrade. Its foundation 

is the recently-introduced SPADE architecture, which 

enhances object identification accuracy by combining 

spatial and semantic data. Mosaic Data Augmentation 

is a novel training approach that YOLOv5 employs to 
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improve the model's generalizability. The most 

current version of the algorithm, which represents the 

seventh iteration in the life cycle of YOLO models, 

was published very recently [18]. Compared to its 

predecessor, YOLOv5, YOLOv7 infers with more 

speed and accuracy. The most recent iteration of 

YOLO is YOLOv7. The foundational network of this 

new design, Efficient-YOLO, is EfficientNet. A huge 

dataset was used to train YOLOv7, which has been 

fine-tuned for object recognition in real-time. It 

outperforms earlier YOLO versions in terms of 

accuracy and speed. Finally, YOLOv4 is the best 

version of YOLO for real-time object recognition and 

is expected to be the most accurate version until 

2021. The most recent iteration of YOLO, YOLOv7, 

is built on a whole new architecture known as 

Efficient-YOLO, which is both quicker and more 

accurate than its predecessors.  

 

OBJECTIVES AND STRUCTURE  
This study expands upon an earlier effort that 

suggested a framework for a pavement monitoring 

system that might detect potholes in photographs 

taken by unmanned aerial vehicles [7]. Here, we take 

the prior work and improve it by comparing it to new 

techniques and datasets, adding additional types of 

dam age, and using data augmentation during training 

to better respond to objects' drastically changing sizes 

in photos. Lastly, this study compares YOLOv5 with 

YOLOv7, and it uses the Transformer Prediction 

Head to enhance the YOLOv5 model for the UAV 

application. In this study, we used a combined dataset 

consisting of both prior research and Crowdsensing-

based Road Damage. Detec tion Challenge, which 

includes additional pavement damage lessons for a 

more thorough comprehension of the issue. Our 

suggested technique is efficient and effective, as 

shown by experimental findings that achieve higher 

accuracy on the test dataset. Using drone-captured 

photos and cutting-edge AI and vision algorithms, 

this research aims to enhance the autonomous road 

monitoring system. One feature of the proposed 

system is the ability to transmit messages with the 

geographical coordinates of the damages observed. 
This would allow the maintenance business to be 

notified whenever road damage is detected. 

 

 

 

The dataset includes road damage types (FIGURE 1). 

Among the many things our group has accomplished, 

we have: • Added an additional prediction head to 

deal with the problem of huge scale fluctuations in 

objects. • YOLOv5's better object localization in 

dense situations is a direct outcome of adding 

Transformer Prediction Heads (TPH) to the model. In 

order to recognize objects in drone footage, it is 

necessary to provide a variety of successful methods 

while excluding those that do not. • Using a self-

trained classifier to improve the classification 

accuracy of certain ambiguous categories. Several 

new types of pavement degradation have been created 

by the project, as shown in Figure 1. Alligator cracks, 

longitudinal cracks, potholes, bumps, and repairs are 

all part of this category. By including these extra 

lessons, the initiative provides a more thorough 

understanding of pavement deterioration and allows 

for more accurate and efficient monitoring of road 

infrastructure. As a whole, the project makes use of 

convolutional neural networks to detect asphalt flaws, 

with the added capability of enabling operator 

overrides or suggestions to gradually increase 

accuracy. In addition, we will include a function that 

uses PIX4D to automatically generate routes that 

cover the full road, doing away with the need for the 

pilot to manually operate the system. This paper is 

organized in the following way: In Section II, we 

review the literature on damage detection techniques 

and UAVs in great detail. We explore the 

architectural design, dataset, and implementation of 

the proposed system in Section III. Section IV delves 
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into the conducted experiments and their outcomes. 

Lastly, the report is concluded in Section V with a 

brief overview of the results and an outline of 

possible future research. Section Two: Works 

Connected When evaluating the state of a road or 

highway for the first time, imagery capturing is 

essential. A unmanned aerial vehicle (UAV), and 

more especially a drone, can take comprehensive 

pictures of the road surface from different angles 

quickly and cheaply. The DJI Mavic Air 2S, a more 

modern drone model that was specifically allocated 

for this purpose, was used in this investigation. This 

drone can take very accurate pictures of road surfaces 

thanks to its high-resolution camera, GPS, and 

obstacle avoidance sensors. More thorough road 

surface coverage, particularly in inaccessible regions, 

may be achieved safely and rapidly with the use of a 

UAV. Deep learning and UAV algorithm 

improvements are the main topics of related 

publications. Using deep learning techniques and 

geotagged ultrasonic beacons, autonomous UAVs 

have been used for structural health monitoring and 

real-time damage mapping, for instance [19], [20].  

In a number of fields, including electric component 

detection[25], wind generator inspection[24], animal 

identification[23], vehicle traffic monitoring[21], and 

huge population monitoring[22], deep learning 

approaches like CNNs have shown encouraging 

results. Automated road damage identification is 

made easier using these approaches, which may also 

be used to video or still photos captured by onboard 

cameras to identify potholes. Road damage detection 

is one area that stands to benefit from the fast 

development and widespread use of deep learning 

technologies, which are applicable across many 

industries including transportation. It is feasible to 

identify road potholes by analyzing footage or stills 

captured by cameras placed on automobiles using 

deep learning algorithms like convolutional neural 

networks (CNNs). Using deep learning algorithms is 

a basic method to automated road damage 

identification. These algorithms are quite good at 

detecting damage and other various items. 

Convolutional Neural Networks (CNNs) are often 

used in this field for deep learning. A deep 

convolutional neural network (CNN) was suggested 

by the authors of the article [26] as a means of 

detecting road damage from UAV photos. After 

being trained and evaluated on a dataset consisting of 

UAV photos, the suggested CNN demonstrated its 

ability to reliably identify road damage. Without 

using image processing methods (IPTs) to extract 

fault information, suggests a new method for 

identifying concrete fractures using a deep CNN 

architecture in [27]. The CNN trains on a massive 

dataset consisting of 40,000 pictures and attains an 

accuracy level of about 98%. When compared to 

more conventional approaches to edge identification, 

such as the Canny and Sobel techniques, the 

suggested method outperforms them over a range of 

test structures and environmental variables. Another 

study that came out recently [28] suggested a way to 

automatically identify road damage using UAV 

photos that relies on deep learning-based object 

recognition. For object detection, they turned to the 

Faster R-CNN method. The results showed that 

compared to other road damage detecting systems, 

the suggested one is the best. In addition, the authors 

of [29] and [30] suggest using R-CNN and its 

improved version, Faster R-CNN, for structural 

visual inspection. This method can identify various 

damages, such as concrete cracks, steel corrosion, 

bolt corrosion, and steel delamination. With the 

suggested approach, we may get an average precision 

rating of 87.8 percent. With a test time of just 0.03 

seconds per picture, the suggested technique is 

lightning quick and has applications in areas such as 

trained network-based quasi-real-time damage 

detection in video. Using Faster R-CNN in 

conjunction with tweaks to TuFF and DTM, a 

fracture detection and quantification approach is 

finally proposed in [31].  

With an average precision of 95%, an intersection 

over union of 83%, and a crack length accuracy of 

93%, the suggested approach attained very high 

levels of accuracy. Using a deep learning-based 

image processing algorithm with super-resolution and 

semi-supervised learning techniques based on GAN, 

the authors of [32] created a novel sensor technology 

for road damage identification. On 400 road photos, 

the suggested technique achieved an average 

recognition performance of 81.54% by mean junction 

over union and 79.228% by F1-score. In the future, 

the research says, the suggested strategy may be 

employed for effective road management. These 

days, it's not enough to only identify damage in 

structural photos. Quantifying the damage by 

measuring the magnitude of the observed faults is 

crucial for a comprehensive understanding and 

assessment of its extent. In order to precisely define 

the bounds of the damaged regions in the picture, a 

more sophisticated method called pixel-level 

segmentation is needed. In order to achieve high 

performance and rapid processing speed in crack 

segmentation in complicated sceneries, Kang [33] 

suggests a new semantic transformer representation 

network (STRNet). A high-performance deep 

learning network for real-time pixel-level 

segmentation of internal damages in concrete 

members using active thermography was proposed in 
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[34], and the network was evaluated and compared 

with other advanced networks, demonstrating 

superior performance and processing speed compared 

with other networks. With a mean intersection over 

the union of 0.900, a positive predictive value of 

0.952, an F1-score of 0.941, and a sensitivity of 

0.942, the attention-based IDSNet much beats state-

of-the-art networks. The alternative perspective is 

known as Single-Shot Detection (SSD), and it is 

designed to identify damage to roads or concrete. 

Using a manually generated dataset, the SDDNet, a 

deep learning network for real-time crack 

segmentation in photographs of concrete, achieved 

good accuracy (as reported in [35]). The model 

processes pictures at 36 frames per second, which is a 

substantial improvement over earlier work, and it 

beats more contemporary models. Arya et al. [36] 

detailed a collection of cutting-edge methods for 

classifying and detecting road damage on a 

worldwide scale. As an example, Pham et al. [37] 

conducted an experiment using Detectron2 and Faster 

R-CNN. From what we can tell from the research we 

looked at, the Faster R-CNN model outperforms the 

YOLO model in terms of accuracy, but at the cost of 

8 frames per second more prediction time. When it 

comes to time and accuracy of predictions, SSD 

strikes a compromise between the two.  

 

YOLO IMPLEMENTATIONS 

In order to enhance road maintenance and decrease 

accidents, [38] proposes a deep learning method for 

detecting potholes on Indian roadways by using the 

YOLO technique. We train YOLOv3, YOLOv2, and 

YOLOv3-tiny on a new dataset consisting of 1500 

photos of roads in India, and then we compare the 

results in terms of accuracy. Alternatively, in [39], 

the authors introduce the M-YOLO, a lightweight 

network architecture that improves the detection 

efficiency of pavement oil repair using UAV photos. 

It is based on MobileNet V3 and YOLOv5S. 

Experimental findings showed that compared to 

YOLOv3, the M-YOLO algorithm outperformed it in 

every respect: accuracy (98.3%), speed (96.6% fps), 

and number of parameters (95.5% average). 

Furthermore, a unique automatic pavement distress 

detection framework using deep learning and stereo 

vision is presented by the authors in [12]. Various 

situations are tested on asphalt roads using the 

suggested approach. Compared to existing models, 

the improved 3D crack segmentation model 

outperforms them in inference speed and accuracy, 

reaching millimeter-level precision in crack and 

pothole segmentation. Accurate volume 

measurements of potholes are also achieved by use of 

the high-resolution pothole segmentation map. Using 

multi spectral pictures to identify road defects is 

another method connected to the literature [40]. 

Unmanned Aerial Vehicle (UAV) multispectral 

imaging is an effective method for finding and 

analyzing road damage. Alternatively, hyperspectral 

pictures might be used to identify pavement fractures 

on roads. The research [41] presents an asphalt crack 

index that is effective for crack identification. It 

outperforms the current metric in literature by an 

average of 21.37% in terms of F1-score. 

Hyperspectral image categorization may also make 

use of Transformer and Convolutional Neural 

Networks (CNNs) [42]. While convolutional neural 

networks (CNNs) learn spectral spatial patterns to 

extract features from hyperspectral data, transform-

formers model long-range relationships to capture 

global contextual information. When applied to 

hyperspectral image classification tasks, both 

methods have shown encouraging outcomes. There is 

a wealth of literature on this rapidly evolving topic; 

more research is needed to determine the most 

effective method for this particular situation. We 

opted for YOLO in this project since we believe it to 

be the most effective method. The most current 

version was YOLOv4 when we authored the first 

article. Extensive testing of the most recent version of 

this technique, YOLOv7, is done here. At this time, 

the recognized authority is the study of Wang et al. 

[18]. 

 

The suggested method's design is shown in Figure 2. 

Some of the authors are the same as in the YOLOv4 

version [16]. Five to one hundred and sixty frames 

per second are YOLOv7's speed and accuracy range. 

Using the available freeware and experimenting with 

different hyperparameters and models, this project 
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trained models to identify and classify road dam ages. 

Section III.  

DESIGN AND IMPLEMENTATION 

A. IMPLEMENTATION  
 

Preventing defects on roadways, streets, highways, 

and other surfaces used by vehicles is the primary 

goal of the concept. Figure 2 shows the original 

project concept, which called for a commercial drone 

outfitted with a high-resolution camera—specifically, 

a multispectral camera. Just as its name implies, the 

multispectral camera can capture many light spectra. 

This article's dataset only makes use of high-

resolution camera pictures and does not include any 

data acquired with a multispectral camera. B. Image 

Dataset from UAVs At the beginning of our work, we 

sought for a dataset of asphalt potholes and cracks by 

conducting a literature search. The databases, 

however, were distinct from the present 

recommendation of taking pictures from a safe 

distance from the road using an unmanned aerial 

vehicle. For this reason, an updated dataset was 

necessary for a realistic representation of the road 

conditions in Spain. The total number of photographs 

shot was 600, and their resolution was 3840×2160 

pixels. The photos, captured from a DJI Air 2S drone 

flying 50 meters above Spanish roadways, only 

included two categories: potholes (D40) and cracks 

(D00). There were 568 labeled pictures that were 

retrieved after creating the dataset and tagging all of 

the shots. During the pre-processing step, the 

orientation of the photographs was changed and they 

were given a new size of 640 × 640. The 

augmentation methods were used to produce different 

versions of every photograph in the collection. 

TABLE 1. Spain roads dataset 

 

The photos have zoom settings between zero and 

fifteen percent. There are a total of 1,362 photos in 

the collection. The training model used 70% of the 

pictures, the validation model 20%, and the 

effectiveness test 10%. Previous work [7] made use 

of this dataset, and you can find it in the repository. 1 

The organization of the categorization is shown in 

Table 1. In order to automatically identify road 

damage from the gathered films, we used the prior 

datasets (Spain) as a reference while continuing to 

construct the dataset. We also included the dataset 

from the CRDDC2022. Road damage in many 

nations is documented in this dataset [43]. Automated 

pavement distress detection machine learning models 

are trained and tested on this benchmark dataset. A 

total of 47,420 road images across five nations (India, 

China, Japan, the Czech Republic, and Norway) 

make up the collection. The four kinds of pavement 

damage—alligator cracks (D20), transverse cracks 

(D10), longitudinal cracks (D00), and pothole cracks 

(D40)—are identified using these photographs in the 

training and testing of models. For the purpose of 

training machine learning models to identify the four 

distinct kinds of pavement damage, this dataset is 

used. Using the training set of images, the models 

learn to distinguish between different kinds of 

damage and their defining traits. To check how well 

the trained models did, we utilize the testing set of 

this dataset. The accuracy of the models is assessed 

by applying them to the testing set of photographs 

and comparing their predictions to the actual labels. 

Because it offers a big and varied collection of 

photos, this dataset is helpful for academics and 

engineers working on automated pavement distress 

identification. Models trained using this dataset will 

be able to generalize well to varied road conditions 

and environments if it includes photos from multiple 

nations. Images from satellites, high-resolution 

cameras, and cellphones were used to compile these 

sets. We use automobiles, motorbikes, and drones to 

get all of it. Table 2 clearly shows the distribution of 

damage kinds (of the four significant damage types) 

across nations. Two datasets pertaining to China were 

made available: one for mobile phone pictures 

(Ch_M) and another for drone photographs 

(Ch_UAV). As noted in the table above, we used the 

first dataset of Spanish roads plus a tiny portion of 

the photographs captured by drones in China 

(Ch_UAV) to compile the dataset for this article. 

There are two supplementary classes in this dataset as 

well. Fix, which can mean both roadwork and Block 

Crack. 

 

 

TABLE 2. Damage category-based data statistics 

for RDD2022. 
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FIGURE 3. UAV used to obtain images for the 

dataset. 

TABLE 3. Damage category-based data statistics 

for the merged dataset 

 

TABLE 4. Dataset split. 

 

The proposed training set became more 

heterogeneous when we included the China Drone 

data. Their goals were congruent with those of this 

project and RDD2020, both of which aim to provide 

practical, low-cost solutions for autonomous road 

damage identification. Fig. 3(a) and Fig. 3(b) show 

the two nations' UAV-obtained photos, which make 

up the final dataset of 2893 images. The distribution 

of classes and annotations for the China Drone and 

Spain datasets, as well as an overview of the damage 

category-based data statistics for the combined 

dataset, are shown in Table 3. The dataset has been 

scaled to 640 × 640 and auto-oriented for 

enhancement and preprocessing. In order to 

artificially boost the quantity and variety of the 

dataset, the photos were enhanced. In this situation, 

two outputs have been generated from each training 

example. In order to make the model more resistant 

to various object orientations, the photos have been 

randomly rotated between -15◦ and +15◦ using the 

rotation. Table displayed the final dataset description.  

 4 

DATA PREPARATION  
 

The two datasets were combined and split into three 

variants corresponding to YOLOv4, YOLOv5, and 

YOLOv7, as shown in the preceding table. Two 

directories are required: one for validation and one 

for training. You also need to include the picture and 

label directories in these two files. Each labelled 

picture would have its own text file with the image 

annotation, while the images themselves would have 

the photographs. The name of the picture file should 

correspond to the name of the text file. The folder's 

structure mirrors that of the YOLO dataset after fresh 

YOLO annotations have been generated. The file 

''data.yaml'' contains information about the data set, 

such as the names and the number of classes. All 

datasets are kept on the platform Roboflow, which 

allowed all of this to be done. Section D: Competence 

and Modeling This study follows the coordinated 

prediction approach similar to YOLOv2 and 

YOLOv3, and it was initially based on the YOLOv4-

tiny model. Unlike previous versions, which only 

allowed for single-class classification, this one allows 

for multi-class categorization as well. Two classes 

were intended to be detected by this first network 

from the 568 photos. The number of classes was later 

raised to six with the introduction of YOLOv5, 

YOLOv5-Tranformer, and YOLOv7. Following that, 

fresh training was carried out using the four thousand 

photos and the six courses. We prepped the data and 

entered it into our YOLO models so that they could 

be trained. Alligator cracks (D20), pothole cracks 

(D40), transverse cracks (D10), repair and block 

cracks (D00), and longitudinal cracks (D00) are all 

detectable by the trained model. In order to train the 

model, we used 4873 pictures from the dataset that 

was created by the roboflow platform. Because of the 

abundance of affordable GPUs, the models detailed 

in this study were trained and validated on a 

computer with an Intel(R) Core(TM) i9-10940X 

CPU@3.30GHz, 128GB of RAM, and an RTX3090 

GPU with 24GB of integrated memory. 

EXPERIMENTAL RESULTS AND 

DISCUSSION  
We compare the final photographs recognized by the 

algorithm to the labeled dataset photos, paying 

attention to quantitative aspects, in order to evaluate 
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our system. In this scenario, various tests provide 

distinct models, and while using three distinct 

models, it is crucial to closely observe the assessment 

procedure. Hence, a robust measure is required to 

choose the most appropriate models from all the 

trials. Two commonly used metrics for evaluation are 

available in this domain. The Mean Accuracy (mAP) 

at the 0.5 Intersection Overlap (IoU) threshold 

(mAP@0.5) is the principal one. The F1 score is the 

second one. The MAP was  

 

 

Figure 5 shows the visual distortion and 

inconsistencies that might result from using 

YOLOv7's default settings on enhanced images. a 

useful metric to use for checking that the model 

remains consistent across several confidence levels 

(robust), since the F1 score is calculated for a given 

confidence level. By default, when working with 

validation data, mAP@0.5 is used to choose the best 

model, and when reporting model performance on 

test data, the F1 score is used. Similar to other 

projects, this one uses mAP@0.5 to find the top 

models and then reports the F1 scores from the test 

sets. We will use the following metrics for the 

quantitative assessment: the accuracy, which may be 

expressed as the ratio of positive results (TP) to total 

results (TP + FP) Basic formula 1. The second 

equation integrates the recall, the probability of an 

image being classified as positive, and the ratio of TP 

to TP + FN. Combining the first two measurements, 

the third and last one is the F1 metric. In addition, 

there is the identification of overlap (IoU), which is 

the area where the detected and imaged regions 

overlap, the mean average precision (mAP), and the 

classification speed, which is measured in frames per 

second (FPS). 

 

 

We tested the model training procedure in three 

stages, varying the number of iterations and the 

resolution of the images. During training, the best 

models are selected using the validation data and the 

metrics mAP@0.5. Along with the primary 

assessment procedure, we also included four new 

approaches to assess the comparison analysis and the  

 
TABLE 5. Performance metric for YOLOv4.  

 

carry out. Through the use of ensemble approaches, 

error analysis, transfer learning, and hyperparameter 

tweaking (aka evolve). • Hyperparameter tuning: This 

is the process of optimizing a model's or algorithm's 

setup for a specific job by modifying its settings and 

parameters. Researchers may find the optimal 

settings and learn which elements are most 

significant by regularly changing the values of 

various parameters. • Analyzing model or algorithm 

mistakes for trends or patterns is known as error 

analysis. In order to learn about a system's limits and 

find ways to make it better, researchers look at the 

particular instances when it fails. • Transfer learning: 

this method entails tailoring an algorithm or model 

that has already been trained to do a certain job. It is 

common for researchers to get better results with less 

data and training time when they use pre-trained 

models, which include the expertise and experience 

of other researchers. To increase overall performance, 

ensemble approaches combine the predictions of 

numerous models or algorithms. Ensemble 

approaches are able to outperform individual models 

by combining their strengths and addressing their 

faults. Section A. YOLOv4 Experiments. We 

executed the first processing phase using YOLOv4. 

By using a pre-trained weight model, the 

convolutional layers were fine-tuned as needed. This 

training's outcomes may have been better compared 

http://www.ijasem.org/


        ISSN 2454-9940 

      www.ijasem.org 

    Vol 19, Issue 2, 2025 

 
 

144 

to the previous work, suggesting that the previous 

work was overfitting or overtraining. Here, we got an 

F1score of0.39, a recall of0.32, and an accuracy of 

0.50. In under three seconds of detection time, they 

picked a mean average precision (mAP@0.50) of 

0.268638 percent for this training. Table 5 provides a 

breakdown of the performance by class. B. FUN 

YOLOv5 TESTS Table 6 shows that as compared to 

YOLOv4, using YOLOv5v7.0 for road damage 

identification produced considerable gains. Using an 

IoU threshold of 0.5 (mAP@.5), the model 

YOLOv5x significantly improved its capacity to 

reliably identify road damage, going from 26.86% to 

59.90%. 

 
TABLE 6. Performance metric for YOLOv5. 

 

 

FIGURE 6. Confusion matrix for the YOLOv5 

model.  

There was a noticeable improvement of around 27% 

in the mAP when the IoU criterion was 0.5 and the 

recall threshold was 0.95 (mAP@.5:.95). The 

percentage of accurately recognized real positive 

events, known as the recall percentage, likewise rose 

from 32% to 56.10%. The remarkable accuracy and 

recall of YOLOv5 in identifying road damage is 

shown by these data. In addition, at shape (1, 3, 640, 

640), YOLOv5's inference time is 17.2 ms, 

comprising 0.9 ms for pre-processing and 17.2 ms for 

inference plus 6.8 ms for Non-maximal Suppression 

(NMS). These results demonstrate the accuracy and 

processing efficiency of YOLOv5. Figure 6 shows 

the confusion matrix for six groups that were 

identified using test data and YOLOv5. The model 

achieved a high rate of accurate classifications. The 

ground truth is shown on the horizontal axis, while 

the predicted classes are shown on the vertical axis. A 

high degree of accuracy is shown by the fact that the 

diagonal elements, which stand for the properly 

categorized classes, are the greatest among all matrix 

elements. Some misclassifications, however, are also 

seen in classes D10 and D40. The model may have 

been more adept at identifying these classes if they 

had been more prevalent in the sample. On the whole, 

nonetheless, the data show that YOLOv5 is effective. 

Figure 7 also shows the F1 scores we computed for 

each class. Being accurate is more important than 

this. 

 

FIGURE 7. F1-Confidence curve 
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useful indicator. The difficulty level rises due to the 

visual and structural differences across the six 

categories. The overall F1 score achieved by the 

system was 70%. Class allocations of F1 scores, 

however, range from 50% to 80%. The F1 score is 

highest in the D40 class and lowest in the D20 class 

because of the D20 class's worse recall. A result that 

is corroborated by the Confusion Matrix that was 

previously shown. C. Experiments with YOLOv7 

The YOLOv7x-W6 model with 300 epochs was used 

to train the best YOLOv7 experiment. After 16 

batches were completed, the grid study proved that 

the other YOLO models (YOLOv7-W6, YOLOv7-

E6, YOLOv7-D6, and YOLOv7-E6E) were accurate 

in prediction and classification. Altering the batch 

size and hyperparameters resulted in 10 completed 

trains using these models, as shown in Figure 8. With 

an overall mAP of 0.737, YOLOv7 did a respectable 

job at detecting the various  

Table 7. classifications of pavement deterioration 

using the YOLOv7 algorithm. The Repair class 

achieved the greatest mean absolute precision (mAP) 

with 0.827. Due to its limited prevalence across all 

datasets, the Block crack class was removed, 

although achieving 100% recall and accuracy, 

demonstrating that the model could reliably recognize 

this form of damage. Nevertheless, the model had 

difficulty correctly detecting this damage in some 

classes, such D20, which had lower precision and 

recall levels. Nevertheless, the model was able to 

successfully identify pavement degradation in 

general, with an overall accuracy of 0.788 and recall 

of 0.714. All of this is shown by the YOLOv7's faster 

inference time of only 11.4 ms. At batch size 1, the 

speed for each 640 × 640 picture is 11.4/6.7/18.1 ms 

for inference, NMS, and totality. All types of 

pavement damage are broken down into their 

respective Precision (P), Recall (R), and mean 

Average Precision (mAP) ratings in Table 7. Table 

data shows that compared to other classes, D00 and 

D20 have a weaker detection impact. One possible 

explanation is that the model has a harder time 

differentiating between classes D00 (potholes) and 

D20 (alligator cracks) due to their shared visual 

characteristics. To make YOLOv7 a better detector 

on D00 and D20, we might use a few targeted tactics. 

The training data may be more varied, incorporating 

variations in illumination, angle, and distance, for 

instance, by using data augmentation methods. 

Before fine-tuning the individual classes, the model 

might be pre-trained using a large dataset of 

comparable items, such pictures of road surfaces, 

using transfer learning. Additionally, in order to 

better manage the complexity and variances of 

potholes and alligator cracks, the model architecture 

was altered in the YOLOv5 with Transformer Head. 

The next sections will elaborate on this enhancement. 

Figure 9 displays the confusion matrix for six groups 

that were classified using test data and YOLOv7. The 

results demonstrate that the model properly classifies 

the majority of the classes. The predicted classes are 

shown on the vertical axis, while the ground truth is 

shown on the horizontal axis. A high degree of 

accuracy is shown by the fact that the diagonal 

elements, which stand for the properly categorized 

classes, are the greatest among all matrix elements. 

The overrepresented D10 and D40 classes are more 

prominent in this matrix when contrasted with the 

YOLOv5 matrix. This could be because YOLOv7 is 

better able to identify these classes, despite their 

overrepresentation, which causes it to  

 

 

FIGURE 9. Confusion matrix for the YOLOv7 

model 
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FIGURE 14. Validation YOLOv5. 

 

TABLE 9. Performance comparison for YOLOv4, 

YOLOv5 and YOLOv7 

 

 

 

 

CONCLUSION AND FUTURE 

WORKS 
Finally, 62929 VOLUME 11, 2023 is a part of this 

study's comparison of the YOLOv4 from previous 

work with the YOLOv5 and YOLOv7 designs. 

Automated Road Damage Detection Using UAV 
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photos and Deep Learning Techniques is a work by 

L. A. Silva et al. that uses YOLOv5 with Transformer 

to identify road damage from UAV photos. The study 

accomplished its aim of developing an architecture 

that can identify road damage and shown that newer 

versions of the design, including YOLOv5 and 

YOLOv7, may enhance earlier efforts. This work 

made a big deal by creating a UAVimagedatabase 

that was optimized for training the YOLOversions 

and then improving it by combining it with the 

RDD2022 dataset. This helped level the playing field 

when it came to detecting potholes and alligator 

cracks, among other types of road deterioration, and 

it worked especially well for roads in China and 

Spain. The study's results represent an important step 

toward further investigation in this area and a 

significant addition to the field as a whole. In the 

results section, we showed that our implementation 

obtained mAP.5 of 26.8% with YOLOv4, 59.9% with 

YOLOv5, and 73.20% with YOLOv7. Lastly, the 

implemented Transformer achieved 65.7%. Our work 

still has room for improvement. To further improve 

performance, future study may investigate other 

picture kinds, including multispectral images and 

LIDAR sensors. Using an embedded computer, it 

may be feasible to fuse such data in order to get 

superior results. Also, fixed-wing UAVs are another 

option for this kind of job. 
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