
 

 

  



        ISSN 2454-9940 

      www.ijasem.org 

    Vol 19, Issue 2, 2025 

 
 

321 

Underwater Image Enhancement via Weighted Wavelet  

Visual Perception Fusion 

1 Mrs. A. Josh Mary, 2 Mrs. B. Mounika, 3 Mallireddy Ramyasri,4Ainavilli Satya Veni,  

5Ch.Naga Padma Manju Anusha,  

1 Associate Professor,Dept.of CSE, Rajamahendri Institute of Engineering & Technology, 

Bhoopalapatnam, Near Pidimgoyyi,Rajahmundry,E.G.Dist.A.P. 533107. 

2 Assistant Professor,Dept.of CSE, Rajamahendri Institute of Engineering & Technology, 

Bhoopalapatnam, Near Pidimgoyyi,Rajahmundry,E.G.Dist.A.P. 533107. 

3,4,5 Students,Dept.of CSE, Rajamahendri Institute of Engineering & Technology, 

Bhoopalapatnam, Near Pidimgoyyi,Rajahmundry,E.G.Dist.A.P. 533107. 

 

Abstract— 
 

Underwater images typically suffer from various quality degradation issues due to the scattering and absorption of 

light, but these degraded-quality underwater images are unbeneficial for analysis and applications. To effectively solve 

these quality degradation issues, an underwater image enhancement method via weighted wavelet visual perception 

fusion is introduced, called WWPF. Concretely, we first present an attenuation-map-guided color correction strategy 

to correct the color distortion of an underwater image. Subsequently, we employ the maximum information entropy 

optimized global contrast strategy to the color-corrected image to obtain a global contrast-enhanced image. 

Meanwhile, we apply a fast integration optimized local contrast strategy to the color-corrected image to get a local 

contrast-enhanced image. To exploit the complementary of the global contrast-enhanced image and the local contrast-

enhanced image, we introduce a weighted wavelet visual perception fusion strategy to obtain a high-quality 

underwater image by fusing the high-frequency and low-frequency components of images at different scales. Our 

extensive experiments on three benchmarks validate that our WWPF outperforms the state-of-the-art methods in 

qualitative and quantitative. Besides, the underwater images processed by our WWPF also benefit practical underwater 

applications. 

I. INTRODUCTION 

 
The ocean, which occupies 71% of the planet, is crucial to human existence and industry. Also, it's a vital cog in the 

wheel of life on Earth. undersea pictures are a crucial means of conveying information about the undersea environment 

and making use of it in marine resource development and use [1]. The complex physical environment underwater, 

however, severely degrades underwater photos [2]. One the one hand, underwater photos may quickly become color 

cast, poor contrast, and brightly lit due to light absorption [3]. In contrast, issues like underwater picture noise 

amplification, detail loss, and fog blur are readily caused by light scattering [4]. In addition to posing problems for 

image processing and analysis, low-quality underwater photographs have a profound effect on how humans perceive 

the world. Consequently, there is an immediate need to address the scientific question of how to improve the clarity 

of underwater images. There are now three main types of underwater picture improvement approaches: image 

restoration, image enhancement using deep learning, and deep learning methods overall [5, 6]. To restore crisp 

underwater photos, early image restoration algorithms depended on certain priors. But there are a lot of priors that 

make these approaches less successful and less resilient [7]. Image enhancement-based approaches, in contrast to 

image restoration methods, do not take priors into account while adjusting pixel values to boost underwater pictures' 

contrast and brightness. Regrettably, they have a tendency to make the enhanced photographs seem too boosted or 

oversaturated [8], [9]. As a result of the abundance of training data, deep learning techniques have recently found their 

way into underwater picture improvement [10], [11], [12], [13]. Notably, deep learning approaches are hindered by 
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the difficulty in obtaining high-quality, large-scale, paired underwater photos. At the same time, deep learning 

approaches are prone to unsteady performance in the complex and ever-changing undersea environment. In 

conclusion, it is beneficial to study how to combine the benefits of various approaches to boost the performance and 

quality of underwater photos. As part of our research, we presented WWPF, an approach to underwater picture 

enhancement using Weighted Wavelet visual Perception Fusion. In contrast to previous fusion methods [9], [16], our  

 

WWPE employs distinct scales of high- and low-frequency components instead of different scales of weight maps in 

fusion techniques to incorporate the complementing benefits of different improved versions of pictures. Our WWPF 

is structured around three main phases that aim to improve underwater pictures' color, global and local contrast, and 

visual perception: attenuation-map-guided color correction, global and local contrast enhancement, and weighted 

wavelet visual perception fusion. The first step is to create a color transfer picture by compensating the other three 

color channels. We do this by redefining the various color channels and using the luminance channel as the reference 

channel. At the same time, in order to get a color-corrected picture, we fuse the input and color transfer pictures using 

an attenuation map. Next, we take the color-corrected picture and apply two strategies to improve the contrast: one is 

the rapid integration optimized local contrast strategy, and the other is the maximum information entropy optimized 

global contrast strategy. The result is an upgraded image with better contrast both globally and locally. Finally, we 

use a wavelet decomposition technique to extract varying-scale high- and low-frequency components from the global 

and local contrast-enhanced pictures. At the same time, we recreate a high-quality underwater picture by integrating 

multiple levels of components with varied scales using the weighted wavelet perception fusion approach. Furthermore, 

Fig. 1 showcases the improved outcomes of our WWPF on many deteriorated photographs. • To fix the color cast of 

underwater images, we present an attenuation-map-guided color correction method. This method takes into account 

both the fact that different levels of light attenuation cause different color distortions and the grey-scale assumption 

that the average grey values of each color channel remain the same before attenuation. • To enhance the color-corrected 

image's global contrast, we suggest an approach that maximizes information entropy; to do the same for the local 

contrast, we recommend a strategy that optimizes quick integration. We discovered that underwater photos may be 

significantly improved by combining global and local contrast-enhanced images, which have complementary but 

beneficial qualities. • A weighted wavelet visual perception fusion approach is introduced. This method use the 

wavelet decomposition technique to extract the high-frequency components from both the global and local contrast-

enhanced pictures, as well as the estimated low-frequency component. Then, to recreate a top-notch underwater 

picture, we use the weighted inverse wavelet transform technique, which takes use of various level components with 

varying sizes. This section provides an overview of the paper's organization and content. Underwater image 

enhancement research is detailed in Section II. Each stage of our WWPF method's workflow is detailed in Section III. 

Section IV presents a detailed overview of the experimental data and analysis. We conclude with a brief overview and 

an outlook on our work in progress.  

 

II. RELATED WORK 
 

Image restoration, image enhancement, and deep learning approaches are the three primary categories into which 

underwater picture improvement techniques are currently classified. References [17], [18], and [19] are applicable. 

What follows is a synopsis of the present study. Methods for restoring damaged photos by inverting the degradation 

process and using priors to estimate underwater imaging parameters have been reported [20], [21]. Due to the 

comparable deterioration characteristics of underwater and foggy pictures, the dark channel prior (DCP) has recently 

been used to underwater image restoration with success [22], [23], [24]. Primors such as general dark channel prior 

[25], attenuation curve prior [26], submerged dark channel prior [27], statistical prior [28], hazy lines prior [29], and 

so on are the key components of these contexts. To estimate more precise transmission maps, Wang et al. [26] used 
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statistical analysis of clear pictures' pixel distribution in RGB space and suggested an adaptive fading curve; 

nonetheless, the model's sensitive robustness was a result of the difficult optimization procedure. The defog method 

developed by Berman et al. [29] included estimating two extra global factors based on various water type spectral 

profiles. This method was able to fix color distortion and bring back the 3D structure of underwater sceneries, but it 

was somewhat time-consuming. In a complex series of processing processes, Muniraj et al. [30] calculated the 

transmission map's depth by comparing the channel intensities. In order to restore low-quality pictures, Liang et al. 

[31] presented a generalized imaging model that used an image decomposition objective function that included 

numerous priors, such as the grey-scale world. There is room for improvement in the performance of single-priori 

hypothesis approaches, nevertheless, since these methods depend on certain priors. Parameter optimization is a 

challenge for numerous priori approaches. Underwater photos may have their color, contrast, and clarity bumped up 

with the use of picture enhancement techniques.  

 

an image's pixel value, as shown by the Retinex [32], [33], [34], histogram [35], [36], [37], and fusion techniques [16], 

[38], [39], [40], [41]. An example of a technique that over-enhanced underwater photos is the one presented by Zhang 

et al. [9] for color correction and detail-preserved fusion, which is based on Retinex. In their study, Zhuang et al. [32] 

presented a variational Retinex approach that improved underwater picture contrast and texture details while 

introducing micro-red distortion. The method was based on the benefits of L1/2 norm and L2 norm. To avoid the 

problems of under-and over-enhancement that plagued early histogram applications, Chani et al. [35] suggested a 

recursive adaptive histogram modification approach. The benefits of both contrast-enhanced and detail-sharpened 

images may be combined in a color balancing and fusion approach suggested by Ancuti et al. [16]. Based on earlier 

fusion work [16], Jiang et al. [39] developed a local structural batch decomposition method; however, this method 

fails to account for halo effects since it does not take non-uniform illumination into account.  

All things considered, they don't take much into account about the picture itself, therefore they can't fix issues like 

halo effects and color distortion in underwater photos. Convolutional Neural Networks (CNNs) and Generative 

Adversarial Networks (GANs) are examples of deep learning techniques that attempt to automatically extract 

representation characteristics from training data and create a nonlinear mapping relationship [42], [43], [44]. The 

application of deep learning approaches to low-level visual tasks is being done progressively, depending on the 

availability of training data and powerful computer systems [45, 46, 47, 48]. Li et al. [15] built an underwater enhanced 

dataset with pairs of high-quality and low-quality underwater photos to address the data gap. They suggested a 

WaterNet to validate the dataset's improved performance, drawing inspiration from CNN [49], [50]. To build synthetic 

underwater pictures, Li et al. [51] suggested an underwater enhancement CNN that was influenced by underwater 
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scenes before and used the water kinds and deterioration levels. Recent work by Zhao et al. [52] builds on prior work 

by CNN [51] to develop a low-weight cascade network that takes complexity and performance into account while 

improving underwater images. Based on GAN [53], [54], [55], Skinner et al. [56] used the underwater physical model 

to create synthetic underwater pictures for GAN training; nevertheless, these images do not faithfully depict the actual 

underwater environments. In order to improve underwater photographs collaboratively, Qi et al. [57] used corrected 

feature matching in conjunction with connection learning.  

A goal-guided twin GAN with an edge-holding closed-loop adversarial improvement and a task-aware feedback 

module was created by Liu et al. [58], however, the model's complexity was raised due to the excessive number of 

learning techniques. While this approach does help with underwater picture quality in general, it does need a 

significant quantity of high-quality underwater photographs for the training phase.  

 

III. METHODOLOGY 
 

Figure 2 shows the flow diagram for the visual perception fusion using weighted wavelets. We acquire the two inputs 

for our framework using a wavelet fusion, which is based on a color-corrected version of a raw underwater picture 

that has had its global and local contrast enhanced. Color retouching, local and global contrast improvement, and 

weighted wavelet fusion are the three primary components of our approach. The first step in correcting underwater 

photos' distorted colors is using an attenuation map-guided fusion to eliminate the water's wavelength-dependent color 

absorption. This leads to a mutually beneficial interaction between the color-corrected picture and its local and global 

contrast-enhanced counterparts. To make a top-notch underwater picture, weighted wavelets combine these two 

improved versions with varying degrees of supplementary data. Following this, we will go over several methods for 

making underwater photos seem more detailed and with more contrast.  

Part A. What Drives People Underwater photographs, in contrast to surface photos, often include a wide range of color 

distortions (blue, green, yellow, blue-green, etc.) caused by severe imaging and illumination restrictions. Underwater 

photographs and their future uses are severely impacted by these color cast difficulties, which is a major bummer. 

Color correction is therefore an important part of underwater picture enhancement pre-processing. To enhance 

underwater photographs' contrast and texture detail, color correcting isn't enough. The methods that follow will focus 

on improving the underwater image's contrast and detail in order to achieve this goal.  

Why Color Correction Is Necessary: In recent times, color correction techniques for underwater photos have shown 

promise, such as statistical-based color correction [32] and piecewise color correction [59]. Nevertheless, as a result 

of overcorrection, these techniques do impart some reddish casts. At the same time, color channel compensation 

algorithms have a favorable impact on underwater picture color correction [16], [38], [60]. Color transfer techniques 

have been effectively used to adjust underwater photos' colors [37], [61] in order to deal with the difficulties. In order 

to make the most of the piecewise color correction and color channel compensation approaches, our work makes use 

of the color transfer method. Second, the Reasons Behind Contrast Enhancement: Underwater photographs may have 

their contrast and brightness improved using histogram equalization techniques [19], [62], but these approaches have 

the drawback of being prone to over-enhancement. These issues are reduced by using bi-histogram equalization 

techniques [17], [36], but, although the bi-histogram does a good job of improving the pictures' global contrast, it also 

makes the noise worse. The complete use of local blocks has shown notable benefits in terms of local contrast 

augmentation for underwater pictures [9], [37]. In order to get a high-quality underwater picture, fusion-based 

approaches have recently used the many feature maps to successfully combine distinct improved versions [35], [37]. 

To get a high-quality underwater picture, we use a weighted wavelet fusion technique, which combines the high- and 

low-frequency parts of the many improved versions, unlike these fusion approaches.  

B. Map of Attenuation Color Correcting Using a Guide Each picture channel follows the same grayscale distribution 

and mean before attenuation, drawing inspiration from the grayscale world hypothesis [16]. Color overcorrection 

occurs in the conventional greyscale world because the constituent channels of an underwater picture are muted to 

different degrees. The luminance channel, often called the reference channel, is renamed to reflect the channel with 

the highest pixel intensity. The luminance channel's computation procedure is mathematically specified as:  

 

where the brightness channel is Il, the red channel is Ir, the yellow channel is Ig, and the blue channel is Ib.  After 

that, because water absorbs light, we use the luminance channel as a reference to make up for the red, green, and blue 

color channels' attenuation. Put another way, we may say that the average pixel intensity for each color channel is: 
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where W is the height and H is the breadth of each input channel. The luminance, red, green, and blue channels' mean 

values are I l, I r, I g, and I b, respectively. Afterwards, using the luminance channel's mean value as a reference, we 

may adjust the red, green, and blue channels as follows:  

 

where I C r, I C g, and I C b are the adjusted color channels for red, green, and blue, respectively.  The histogram 

distribution does not hold true even if the underwater picture satisfies the grey-scale world assumption that all channels 

have almost equal mean grey values thanks to the aforementioned correction technique.  To make each channel's 

dynamic range even wider, meeting the grey-scale world assumption that their histogram distributions are identical.  

To fix the color-transfer image—also known as the color-compensated underwater image—we use a linear stretching 

approach.  The procedure of linear stretching is described as: 

 

where I CR c is the color channel that corresponds to the cth color and is used for correction. I max c is the highest 

possible pixel value for the cth input channel, while I min c is the lowest possible pixel value. The maximum and 

lowest stretching ranges for each color channel are I max o and I min o, respectively, and they are set to 0 to 255. 

Underwater images' wavelength-dependent light absorption effect cannot be well captured by the grey-scale world 

assumption, which just considers the average grey values and histogram distribution of the different color channels.  

Using only the color adjustment approach, the results for blue, green, and yellow underwater are shown in Fig. 3.  

 

photographs experience over-correction, somewhat cyan, and slightly magenta hues. Hence, in order to acquire a 

color-corrected underwater picture, we make full use of the attenuation of various lights and use the attenuation map 

to direct the merging of the raw underwater image and the color transfer image. The maximum attenuation map is 

used as the guiding fusion picture to make sure that the light attenuation of each color channel can be adjusted properly. 

The ultimate attenuation map may be expressed mathematically as:  
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Ancuti et al. [63] established the default value of 1.2 for γ, the parameter that governs the intensity of the received 

light, and I A max, the maximum attenuation map, are all variables in this context. Then, pixel-by-pixel, we get a 

color-corrected underwater picture by using the attenuation map to fuse the raw and color transfer underwater images:  

 

when it comes to underwater photos, I CC and I CR stand for color corrected and color transfer, respectively. Figure 

3 shows that the suggested approach of color correction has accomplished good results in terms of color correction 

and three channels with comparable attenuation, but it still has issues with contrast and detail improvement.  

Section C. Global Contrast Optimization Using the maximum information entropy optimal global contrast technique, 

we strive to increase the global contrast of the color-corrected picture in this part. To forecast how detailed a picture 

is, one may use image entropy to determine how evenly distributed its histograms are [64]. In the field of information 

theory, entropy is defined mathematically as:  

 

The input image's dynamic range ranges from 0 to L − 1, where pi is the probability of grayscale i and L is the number 

of grey levels. The entropy of a picture may be decreased with histogram equalization since it integrates the image's 

histogram data. In order to avoid losing picture detail due to grey level consolidation, we may compare the histogram's 

grey level consolidation against the amount of information entropy. This way, we can make sure that the image's 

global contrast is properly boosted. Lastly, we optimize the global contrast in the Bi-histogram using the greatest 

information entropy as a measure. We begin by defining the histogram data separation threshold Iht and the dynamic 

range separation threshold Idt, which are necessary for maximizing global contrast. Although it restricts the Bi-

histogram method's applicability, the majority of existing approaches explicitly set the two thresholds equal. Due to 

its inefficiency in determining the optimal dynamic separation threshold, our proposed global contrast enhancement 

technique is based on maximum entropy optimization. In particular, the whole greyscale range is crossed by the 

dynamic threshold Idt. With every iteration, the technique stretches the histograms on either side of the threshold. 

After that, the procedure finds the information entropy of both the left and right histograms and adds them together. 

The best dynamic separation threshold Ibest is the point at which the highest value of the left and right information 

entropies are solved, and the associated separation threshold is used. According to mathematical calculations, the 

highest entropy that corresponds to the ideal separation threshold is given by:  

 

with I Left Entropy(Iht) standing for the information entropy of the left histogram of the optimized global contrast 

picture and I Right Entropy(Iht) for the right histogram.  Here is how they explain their computation process: 

 

When Iht varies, Pi is the probability of each gray level once the sub-histogram is equalized. Cooperation and mutual 

effect are key components of iterative optimization.  
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where CDF() denotes the cumulative distribution function of the histogram and Imax and Imin stand for the maximum 

and lowest gray levels, respectively. The optimal dynamic range threshold Ibest is obtained by maximizing the 

information entropy of the complete histogram, as shown in the above solution method. By maximizing the image 

information entropy after histogram equalization, we are able to derive the global contrast enhanced underwater image 

(IGE) from the color-corrected underwater picture.  

 

IV. EXPERIMENT AND ANALYSIS 
 

Here, we assess the efficacy of our WWPF approach by conducting comprehensive quantitative and qualitative tests 

on a number of industry-standard datasets. Next, we look at the results of the detail augmentation, ablation 

experiments, application testing, and generalization performance analyses. Because of space constraints, the majority 

of the experimental data are included in the supplemental materials. Alternative Approaches: Our WWPF was 

evaluated alongside ten other approaches. These methods included three for image restoration (GDCP [26], DTVR 

[6], GIFM [31]), three for image enhancement (CBAF [16], BRUE [33], ADCE [38]), and four for deep learning 

(FUnIE-GAN [53], UIECˆ2-Net [50], PUIE-Net [55], SGUIE-Net [2]). We utilized the code1 that other writers have 

duplicated as CBAF [16]'s source code is not accessible to the public. We used the authors' provided programs to 
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produce their findings for the following methods: GDCP [26], DTVR [6], GIFM [31], BRUE [33], ADCE [38], 

FUnIE-GAN [53], UIEC2-Net [50], PUIE-Net [55], and SGUIE-Net [2]. We have chosen three benchmark datasets—

UCCS [14], UIQS [14], and UIEB [15]—to evaluate the efficacy of our WWPF approach. In order to test how well 

various approaches for underwater picture color correcting work, UCCS [14] is divided into three 100-image subsets: 

bluish, blue-green, and greenish tones. In order to compare how well various strategies improve visibility in 

underwater photographs, UIQS [14] uses 726-image subsets of A, B, C, D, and E degradation levels. In order to test 

how well various technologies improve underwater photographs, UIEB [15] compiles 890 images with varying 

degrees of deterioration. Criteria for Assessment: Using five widely-used metrics for evaluating image quality—

average gradient (AG) [36], information entropy (IE) [64], edge intensity (EI) [36], underwater color image quality 

evaluation metric (UCIQE) [66], and colorfulness contrast fog density index (CCF) [67]—we quantitatively assess 

the enhancement performance of various methods. Image clarity is improved with a higher AG [36] score. Images 

with higher IE [64] scores have more detailed information. With a higher EI [36] score, the image's texture becomes 

more apparent. A higher CCF [67] or UCIQE [66] score indicates that human visual perception is superior. You should 

know that UCIQE and CCF scores don't always show how well underwater picture enhancing techniques work. A. 

UCCS Dataset Assessment 1) Weighing Qualitatively: The main goal for evaluating the performance of various 

approaches in underwater picture quality assessment is the capacity to correct color distortion. As a preliminary step, 

we compare how well various approaches fix colors on the UCCS dataset. The structural complexity of the undersea 

landscape is severely diminished by the different forms of color distortion, as seen in Figure 6 (a). Unsatisfactory 

color correcting performance is achieved using GDCP [26], DTVR [6], and GIFM [31]. SGUIE-Net [2], BRUE [33], 

CBAF [16], and FUnIE-GAN [53] all produce distorted colors that aren't desired, such reddish, yellowish, and blue 

artifacts. When it comes to underwater photos, UIECˆ2-Net [50], PUIE-Net [55], and ADCE [38] all do an excellent 

job of correcting color distortions, although ADCE lowers the saturation and detail of the improved underwater image. 

In comparison to our WWPF technique, UIECˆ2-Net [50] and PUIE-Net [55] perform worse when it comes to detail 

and contrast improvement.  

To sum up, our WWPF approach is effective in enhancing contrast and texture detail and has a high ability to cure 

underwater photographs' many color distortion problems. 2) Quantitative Comparisons: Our WWPF approach 

performs well in terms of qualitative assessment when it comes to improving color, texture detail, and contrast. The 

benefits of our WWPF are being objectively assessed using evaluation measures at the same time. The scores of 

several approaches evaluated on the UCCS [14] dataset are reported in Table I using the following headings: AG [36], 

IE [64], EI [36], UCIQE [66], and CCF [67]. Our WWPF technique also performs well in the quantitative assessment, 

as shown in Table I, where it has the top or near-highest scores for AG [36], IE [64], EI [36], UCIQE [66], and CCF 

[67]. When applied to the UCCS dataset, our technique yields satisfactory quantitative and qualitative outcomes. B. 

Using the UIQS Dataset for Assessment 1) Weighing Qualitatively: We go a step further by comparing the 

effectiveness of several approaches to improving the clarity of underwater photos with varying degrees of deterioration 

using the UIQS [14] dataset. Figure 7 shows that the majority of the strategies enhance the clarity of underwater photos 

from UIQS that have been deteriorated [17]. When it comes to fixing color distortion, GDCP [26], DTVR [6], GIFM 

[31], FUnIE-GAN [53], and SGUIE-Net [2] fall short. Certain situations may see the introduction of reddish halos 

and local artifacts when using CBAF [16], BRUE [33], or ADCE [38]. The color correction results obtained by 

UIECˆ2-Net [50], PUIE-Net [55], and our WWPF are all good. When it comes to improving contrast, UIECˆ2-Net 

[50] and PUIE-Net [55] are stronger than GDCP [26], DTVR [6], GIFM [31], FUnIE-GAN [53], and SGUIE-Net [2]. 

In terms of contrast improvement, CBAF [16], BRUE [33], and ADCE [38] outperform UIECˆ2-Net [50] and PUIE-

Net [55]. In contrast, ADCE [38], BRUE [33], and CBAF [16] could obliterate texture features or cause local artifacts. 

When compared to the aforementioned approaches, our WWPF approach successfully improves color correction, 

contrast improvement, and detail sharpening.  
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2) Comparing Quantitatively: The results of several technique tests on the UIQS [14] dataset are shown in Table I, 

which includes the scores for AG [36], IE [64], EI [36], UCIQE [66], and CCF [67]. The quantitative examination of 

the complete UIQS [14] dataset shows that our WWPF approach has the best score, or very close to it, as shown in 

Table I. From a qualitative and quantitative standpoint, our WWPF technique outperforms the alternatives when 

evaluating underwater photos with varying degrees of deterioration. C. Assessment Using the UIEB Dataset  

1) Weighing Qualitatively: We quantitatively compare our technique to other ways using the UIEB [15] dataset to 

further assess the enhancing performance of our WWPF method for various forms of underwater picture deterioration. 

To thoroughly test the improved performance of our WWPF approach, we used blurred, green-distorted, and blue-

distorted underwater photos (Fig. 8 (a)). No amount of color correction can fix an underwater picture that is green-

distorted using GDCP[26], GIFM[31], or FUnIE-GAN [53]. There are several issues with the color correction results 

and the introduction of local artifacts in DTVR [6], ADCE [38], and PUIE-Net [55].  

While UIECˆ2-Net [50], SGUIE-Net [2], CBAF [16], and BRUE [33] are effective in correcting green distortion, they 
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all add a small red distortion. Better removal of the green distortion is achieved with our WWPF approach, and no 

extra  

 

 

seems quite reddish. The color distortion problem is worsened for underwater images with blue distortion when using 

GDCP [26], DTVR [6], GIFM [31], and FUnIE-GAN [53]. No amount of tweaking can fix the blue distortion in the 

backdrop with CBAF [16], UIECˆ2-Net [50], or PUIE-Net [55]. While BRUE [33], ADCE [38], and SGUIE-Net [2] 

do a decent job of correcting colors, our WWPF outperforms them when it comes to improving texture detail and 

contrast. The deblurring capabilities of GDCP [26], FUnIE-GAN [53], PUIE-Net [55], and SGUIE-Net [2] are 

inadequate for underwater images that are blurry. The deblurring effects of GIFM [31], CBAF [16], BRUE [33], and 

UIECˆ2-Net [50] are satisfactory, but the texture details they increase are inadequate. We found that our WWPF 

performs better at deblurring and improving texture details compared to ADCE [38], which loses texture details, while 

DTVR [6] presents the overexposure issue. 2) Analyzing Data Quantitatively: Scores for AG[36], IE[64], EI[36], 

UCIQE[66], and CCF[67] from various methodologies evaluated on the UIEB [15] dataset are shown in Table I. 

According to Table I, our WWPF got the highest quantitative score, or very close to it. Our WWPF also outperforms 

the competition on the UCCS[14], UIQS[14], and UIEB [15] datasets in terms of total mean quantitative score. For 

all three benchmark datasets, our WWPF produces respectable quantitative and qualitative outcomes.  
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our WWPF technique unaffected by AMGCC; (b) our WWPF method unaffected by optimized global contrast; (c) 

our WWPF method unaffected by optimized local contrast; and (d) our WWPF method unaffected by weighted 

wavelet fusion. Our visual findings of evaluating the WWPF approach on the UCCS [14], UIQS [14], and UIEB [15] 

datasets are reported in Fig. 10. You can see the findings visually in Fig. 10. Here they are: 1) Without AMGCC, 

underwater images are more visible, but color correction and local contrast enhancement are not as effective. 2) 

Without OGC, local contrast enhancement is great, but global contrast enhancement could use some work. 3) Without 
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OLC, global contrast enhancement is effective, but local contrast enhancement is lacking. 4) Without WWF, fusing 

global and  
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V. CONCLUSION 
 

Here, we lay out the plan for improving underwater images. Among the primary components of our approach are 

weighted wavelets of various improved underwater pictures, color correction, and optimization of both global and 

local contrast. To compensate for the differences in global and local contrast as well as texture characteristics across 

pictures of various improved versions, we use weighted wavelet fusion. Our WWPF showed strong generalizability 

and exceptional enhancement capabilities on three benchmark datasets, according to quantitative and qualitative tests. 

Our WWPF does a good job of producing respectable results, however it falls short when it comes to suppressing 

picture noise when compared to other approaches. Accordingly, in further studies, we will investigate methods for 

efficient noise suppression that do not compromise the improved performance of our WWPF approach.  
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