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Abstract—

Underwater images typically suffer from various quality degradation issues due to the scattering and absorption of
light, but these degraded-quality underwater images are unbeneficial for analysis and applications. To effectively solve
these quality degradation issues, an underwater image enhancement method via weighted wavelet visual perception
fusion is introduced, called WWPF. Concretely, we first present an attenuation-map-guided color correction strategy
to correct the color distortion of an underwater image. Subsequently, we employ the maximum information entropy
optimized global contrast strategy to the color-corrected image to obtain a global contrast-enhanced image.
Meanwhile, we apply a fast integration optimized local contrast strategy to the color-corrected image to get a local
contrast-enhanced image. To exploit the complementary of the global contrast-enhanced image and the local contrast-
enhanced image, we introduce a weighted wavelet visual perception fusion strategy to obtain a high-quality
underwater image by fusing the high-frequency and low-frequency components of images at different scales. Our
extensive experiments on three benchmarks validate that our WWPF outperforms the state-of-the-art methods in
qualitative and quantitative. Besides, the underwater images processed by our WWPF also benefit practical underwater
applications.

I. INTRODUCTION

The ocean, which occupies 71% of the planet, is crucial to human existence and industry. Also, it's a vital cog in the
wheel of life on Earth. undersea pictures are a crucial means of conveying information about the undersea environment
and making use of it in marine resource development and use [1]. The complex physical environment underwater,
however, severely degrades underwater photos [2]. One the one hand, underwater photos may quickly become color
cast, poor contrast, and brightly lit due to light absorption [3]. In contrast, issues like underwater picture noise
amplification, detail loss, and fog blur are readily caused by light scattering [4]. In addition to posing problems for
image processing and analysis, low-quality underwater photographs have a profound effect on how humans perceive
the world. Consequently, there is an immediate need to address the scientific question of how to improve the clarity
of underwater images. There are now three main types of underwater picture improvement approaches: image
restoration, image enhancement using deep learning, and deep learning methods overall [5, 6]. To restore crisp
underwater photos, early image restoration algorithms depended on certain priors. But there are a lot of priors that
make these approaches less successful and less resilient [7]. Image enhancement-based approaches, in contrast to
image restoration methods, do not take priors into account while adjusting pixel values to boost underwater pictures'
contrast and brightness. Regrettably, they have a tendency to make the enhanced photographs seem too boosted or
oversaturated [8], [9]. As a result of the abundance of training data, deep learning techniques have recently found their
way into underwater picture improvement [10], [11], [12], [13]. Notably, deep learning approaches are hindered by
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the difficulty in obtaining high-quality, large-scale, paired underwater photos. At the same time, deep learning
approaches are prone to unsteady performance in the complex and ever-changing undersea environment. In
conclusion, it is beneficial to study how to combine the benefits of various approaches to boost the performance and
quality of underwater photos. As part of our research, we presented WWPF, an approach to underwater picture
enhancement using Weighted Wavelet visual Perception Fusion. In contrast to previous fusion methods [9], [16], our

(c)

Fig. 1. Enhanced results (hottom) of our WWPF for several raw images (top). (a) and (b) are derived from the UCCS [14]. (c) and (d) are derived from
the UIQS [14]. (e) and (f) are derived from the UIEB [15]. (g), (h), and (i) are derived from the Internct. Without fine-tuning the parameters, our WWPF
obtained satisfactory visual results for different degraded images from different datasets.

WWPE employs distinct scales of high- and low-frequency components instead of different scales of weight maps in
fusion techniques to incorporate the complementing benefits of different improved versions of pictures. Our WWPF
is structured around three main phases that aim to improve underwater pictures' color, global and local contrast, and
visual perception: attenuation-map-guided color correction, global and local contrast enhancement, and weighted
wavelet visual perception fusion. The first step is to create a color transfer picture by compensating the other three
color channels. We do this by redefining the various color channels and using the luminance channel as the reference
channel. At the same time, in order to get a color-corrected picture, we fuse the input and color transfer pictures using
an attenuation map. Next, we take the color-corrected picture and apply two strategies to improve the contrast: one is
the rapid integration optimized local contrast strategy, and the other is the maximum information entropy optimized
global contrast strategy. The result is an upgraded image with better contrast both globally and locally. Finally, we
use a wavelet decomposition technique to extract varying-scale high- and low-frequency components from the global
and local contrast-enhanced pictures. At the same time, we recreate a high-quality underwater picture by integrating
multiple levels of components with varied scales using the weighted wavelet perception fusion approach. Furthermore,
Fig. 1 showcases the improved outcomes of our WWPF on many deteriorated photographs. * To fix the color cast of
underwater images, we present an attenuation-map-guided color correction method. This method takes into account
both the fact that different levels of light attenuation cause different color distortions and the grey-scale assumption
that the average grey values of each color channel remain the same before attenuation. « To enhance the color-corrected
image's global contrast, we suggest an approach that maximizes information entropy; to do the same for the local
contrast, we recommend a strategy that optimizes quick integration. We discovered that underwater photos may be
significantly improved by combining global and local contrast-enhanced images, which have complementary but
beneficial qualities. * A weighted wavelet visual perception fusion approach is introduced. This method use the
wavelet decomposition technique to extract the high-frequency components from both the global and local contrast-
enhanced pictures, as well as the estimated low-frequency component. Then, to recreate a top-notch underwater
picture, we use the weighted inverse wavelet transform technique, which takes use of various level components with
varying sizes. This section provides an overview of the paper's organization and content. Underwater image
enhancement research is detailed in Section II. Each stage of our WWPF method's workflow is detailed in Section III.
Section IV presents a detailed overview of the experimental data and analysis. We conclude with a brief overview and
an outlook on our work in progress.

II. RELATED WORK

Image restoration, image enhancement, and deep learning approaches are the three primary categories into which
underwater picture improvement techniques are currently classified. References [17], [18], and [19] are applicable.
What follows is a synopsis of the present study. Methods for restoring damaged photos by inverting the degradation
process and using priors to estimate underwater imaging parameters have been reported [20], [21]. Due to the
comparable deterioration characteristics of underwater and foggy pictures, the dark channel prior (DCP) has recently
been used to underwater image restoration with success [22], [23], [24]. Primors such as general dark channel prior
[25], attenuation curve prior [26], submerged dark channel prior [27], statistical prior [28], hazy lines prior [29], and
so on are the key components of these contexts. To estimate more precise transmission maps, Wang et al. [26] used
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statistical analysis of clear pictures' pixel distribution in RGB space and suggested an adaptive fading curve;
nonetheless, the model's sensitive robustness was a result of the difficult optimization procedure. The defog method
developed by Berman et al. [29] included estimating two extra global factors based on various water type spectral
profiles. This method was able to fix color distortion and bring back the 3D structure of underwater sceneries, but it
was somewhat time-consuming. In a complex series of processing processes, Muniraj et al. [30] calculated the
transmission map's depth by comparing the channel intensities. In order to restore low-quality pictures, Liang et al.
[31] presented a generalized imaging model that used an image decomposition objective function that included
numerous priors, such as the grey-scale world. There is room for improvement in the performance of single-priori
hypothesis approaches, nevertheless, since these methods depend on certain priors. Parameter optimization is a
challenge for numerous priori approaches. Underwater photos may have their color, contrast, and clarity bumped up
with the use of picture enhancement techniques.

Redefined channel

Redefineds Redefined
M chahmel * 8 channel

—————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

* Fasi integration optimized local contrast

* Maximum information entropy optimized global contrast * Wavelet decomposition strategy

e e e — e
Fig. 2. Flowchart of our proposed WWPF method. Given a raw underwater image, it first participates in an attenuation-map-guided color correction stage to
produce a color-cormected underwater image. Aftierward, two images are denoted as the global contrast-enhanced and the local contrast-enhanced images. They
are derived from the color-cormected image obtained by the maximum information entropy optimized global contrast method and the fast integration optimized
local contrast method. Finally, the nvo enhanced versions of the approximate low-frequency component, vertical, horizontal, and diagonal high-frequency
components, are used to reconstruct a high-guality underwater image.

an image's pixel value, as shown by the Retinex [32], [33], [34], histogram [35], [36], [37], and fusion techniques [16],
[38], [39], [40], [41]. An example of a technique that over-enhanced underwater photos is the one presented by Zhang
et al. [9] for color correction and detail-preserved fusion, which is based on Retinex. In their study, Zhuang et al. [32]
presented a variational Retinex approach that improved underwater picture contrast and texture details while
introducing micro-red distortion. The method was based on the benefits of L1/2 norm and L2 norm. To avoid the
problems of under-and over-enhancement that plagued early histogram applications, Chani et al. [35] suggested a
recursive adaptive histogram modification approach. The benefits of both contrast-enhanced and detail-sharpened
images may be combined in a color balancing and fusion approach suggested by Ancuti et al. [16]. Based on earlier
fusion work [16], Jiang et al. [39] developed a local structural batch decomposition method; however, this method
fails to account for halo effects since it does not take non-uniform illumination into account.
All things considered, they don't take much into account about the picture itself, therefore they can't fix issues like
halo effects and color distortion in underwater photos. Convolutional Neural Networks (CNNs) and Generative
Adversarial Networks (GANs) are examples of deep learning techniques that attempt to automatically extract
representation characteristics from training data and create a nonlinear mapping relationship [42], [43], [44]. The
application of deep learning approaches to low-level visual tasks is being done progressively, depending on the
availability of training data and powerful computer systems [45, 46,47, 48]. Li et al. [ 15] built an underwater enhanced
dataset with pairs of high-quality and low-quality underwater photos to address the data gap. They suggested a
WaterNet to validate the dataset's improved performance, drawing inspiration from CNN [49], [50]. To build synthetic
underwater pictures, Li et al. [51] suggested an underwater enhancement CNN that was influenced by underwater
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scenes before and used the water kinds and deterioration levels. Recent work by Zhao et al. [52] builds on prior work
by CNN [51] to develop a low-weight cascade network that takes complexity and performance into account while
improving underwater images. Based on GAN [53], [54], [55], Skinner et al. [56] used the underwater physical model
to create synthetic underwater pictures for GAN training; nevertheless, these images do not faithfully depict the actual
underwater environments. In order to improve underwater photographs collaboratively, Qi et al. [57] used corrected
feature matching in conjunction with connection learning.
A goal-guided twin GAN with an edge-holding closed-loop adversarial improvement and a task-aware feedback
module was created by Liu et al. [58], however, the model's complexity was raised due to the excessive number of
learning techniques. While this approach does help with underwater picture quality in general, it does need a
significant quantity of high-quality underwater photographs for the training phase.

III. METHODOLOGY

Figure 2 shows the flow diagram for the visual perception fusion using weighted wavelets. We acquire the two inputs
for our framework using a wavelet fusion, which is based on a color-corrected version of a raw underwater picture
that has had its global and local contrast enhanced. Color retouching, local and global contrast improvement, and
weighted wavelet fusion are the three primary components of our approach. The first step in correcting underwater
photos' distorted colors is using an attenuation map-guided fusion to eliminate the water's wavelength-dependent color
absorption. This leads to a mutually beneficial interaction between the color-corrected picture and its local and global
contrast-enhanced counterparts. To make a top-notch underwater picture, weighted wavelets combine these two
improved versions with varying degrees of supplementary data. Following this, we will go over several methods for
making underwater photos seem more detailed and with more contrast.
Part A. What Drives People Underwater photographs, in contrast to surface photos, often include a wide range of color
distortions (blue, green, yellow, blue-green, etc.) caused by severe imaging and illumination restrictions. Underwater
photographs and their future uses are severely impacted by these color cast difficulties, which is a major bummer.
Color correction is therefore an important part of underwater picture enhancement pre-processing. To enhance
underwater photographs' contrast and texture detail, color correcting isn't enough. The methods that follow will focus
on improving the underwater image's contrast and detail in order to achieve this goal.
Why Color Correction Is Necessary: In recent times, color correction techniques for underwater photos have shown
promise, such as statistical-based color correction [32] and piecewise color correction [59]. Nevertheless, as a result
of overcorrection, these techniques do impart some reddish casts. At the same time, color channel compensation
algorithms have a favorable impact on underwater picture color correction [16], [38], [60]. Color transfer techniques
have been effectively used to adjust underwater photos' colors [37], [61] in order to deal with the difficulties. In order
to make the most of the piecewise color correction and color channel compensation approaches, our work makes use
of the color transfer method. Second, the Reasons Behind Contrast Enhancement: Underwater photographs may have
their contrast and brightness improved using histogram equalization techniques [19], [62], but these approaches have
the drawback of being prone to over-enhancement. These issues are reduced by using bi-histogram equalization
techniques [17], [36], but, although the bi-histogram does a good job of improving the pictures' global contrast, it also
makes the noise worse. The complete use of local blocks has shown notable benefits in terms of local contrast
augmentation for underwater pictures [9], [37]. In order to get a high-quality underwater picture, fusion-based
approaches have recently used the many feature maps to successfully combine distinct improved versions [35], [37].
To get a high-quality underwater picture, we use a weighted wavelet fusion technique, which combines the high- and
low-frequency parts of the many improved versions, unlike these fusion approaches.
B. Map of Attenuation Color Correcting Using a Guide Each picture channel follows the same grayscale distribution
and mean before attenuation, drawing inspiration from the grayscale world hypothesis [16]. Color overcorrection
occurs in the conventional greyscale world because the constituent channels of an underwater picture are muted to
different degrees. The luminance channel, often called the reference channel, is renamed to reflect the channel with
the highest pixel intensity. The luminance channel's computation procedure is mathematically specified as:

(i, jy = max{l. (i, j). I, (i, j). Iy(i, j)}. (1)

where the brightness channel is Il, the red channel is Ir, the yellow channel is Ig, and the blue channel is Ib. After
that, because water absorbs light, we use the luminance channel as a reference to make up for the red, green, and blue
color channels' attenuation. Put another way, we may say that the average pixel intensity for each color channel is:

324


http://www.ijasem.org/

ISSN 2454-9940

(m_ INTERNATIONAL JOURNAL OF APPLIED o iisemor
" J) SCIENCE ENGINEERING AND MANAGENENT L

o’/

Vol 19, Issue 2, 2025

H W

— 1

Ie=——=2 D Il j), cellingbl,
HxWJ.=] P

where W is the height and H is the breadth of each input channel. The luminance, red, green, and blue channels' mean
values are [ 1, I 1, I g, and I b, respectively. Afterwards, using the luminance channel's mean value as a reference, we
may adjust the red, green, and blue channels as follows:

I€G, j) = LG, jy+ T =Tr) % (i, j)
IS j) = 1,0, )y + (T —Tg) x Lii, j) (3)
IEG, j) = (i, j)+ (I = Tp) x Lii, j),

where [ Cr, I C g, and I C b are the adjusted color channels for red, green, and blue, respectively. The histogram
distribution does not hold true even if the underwater picture satisfies the grey-scale world assumption that all channels
have almost equal mean grey values thanks to the aforementioned correction technique. To make each channel's
dynamic range even wider, meeting the grey-scale world assumption that their histogram distributions are identical.
To fix the color-transfer image—also known as the color-compensated underwater image—we use a linear stretching
approach. The procedure of linear stretching is described as:

max Tmin
"ra _‘Iro

ISR=pMr e (1f — 1M x celrgb), @

max min *
‘r.:' - ‘rr

where I CR c is the color channel that corresponds to the cth color and is used for correction. I max c is the highest
possible pixel value for the cth input channel, while I min c is the lowest possible pixel value. The maximum and
lowest stretching ranges for each color channel are I max o and I min o, respectively, and they are set to 0 to 255.
Underwater images' wavelength-dependent light absorption effect cannot be well captured by the grey-scale world
assumption, which just considers the average grey values and histogram distribution of the different color channels.
Using only the color adjustment approach, the results for blue, green, and yellow underwater are shown in Fig. 3.

(a) (b) (c) (d) (€) (n (g) (h) (i) 4] (k) t)]
Fig. 3. Comparison results were yielded using the color compensation and attenuation-map-guided fusion. From top to bottom: (a), {e), and (i) are
the raw underwater images (From left to right are blue, green, and yellow underwater images.), the result of color compensation, and the result of attenuation
map-guided fusion, respectively. (b, (f), and (j) are the atenuation map of the red channel, respectively. (c), (g), and (k) are the attenuation map of the green
channel, respectively. (d), (h), and (1) are the attenuation map of the blue channel, respectively.

photographs experience over-correction, somewhat cyan, and slightly magenta hues. Hence, in order to acquire a
color-corrected underwater picture, we make full use of the attenuation of various lights and use the attenuation map
to direct the merging of the raw underwater image and the color transfer image. The maximum attenuation map is
used as the guiding fusion picture to make sure that the light attenuation of each color channel can be adjusted properly.
The ultimate attenuation map may be expressed mathematically as:

I3 =max{l — LY 11", 1 -1}, (5)
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Ancuti et al. [63] established the default value of 1.2 for vy, the parameter that governs the intensity of the received
light, and I A max, the maximum attenuation map, are all variables in this context. Then, pixel-by-pixel, we get a
color-corrected underwater picture by using the attenuation map to fuse the raw and color transfer underwater images:

IC =18 IR L (1 — 12 I, cefr,g.bl, (6

max = ¢ max

when it comes to underwater photos, I CC and I CR stand for color corrected and color transfer, respectively. Figure
3 shows that the suggested approach of color correction has accomplished good results in terms of color correction
and three channels with comparable attenuation, but it still has issues with contrast and detail improvement.
Section C. Global Contrast Optimization Using the maximum information entropy optimal global contrast technique,
we strive to increase the global contrast of the color-corrected picture in this part. To forecast how detailed a picture
is, one may use image entropy to determine how evenly distributed its histograms are [64]. In the field of information
theory, entropy is defined mathematically as:

L—1

Ientropy = — Z pilog, pi. (7)
i=i

The input image's dynamic range ranges from 0 to L — 1, where pi is the probability of grayscale i and L is the number
of grey levels. The entropy of a picture may be decreased with histogram equalization since it integrates the image's
histogram data. In order to avoid losing picture detail due to grey level consolidation, we may compare the histogram's
grey level consolidation against the amount of information entropy. This way, we can make sure that the image's
global contrast is properly boosted. Lastly, we optimize the global contrast in the Bi-histogram using the greatest
information entropy as a measure. We begin by defining the histogram data separation threshold Tht and the dynamic
range separation threshold Idt, which are necessary for maximizing global contrast. Although it restricts the Bi-
histogram method's applicability, the majority of existing approaches explicitly set the two thresholds equal. Due to
its inefficiency in determining the optimal dynamic separation threshold, our proposed global contrast enhancement
technique is based on maximum entropy optimization. In particular, the whole greyscale range is crossed by the
dynamic threshold Idt. With every iteration, the technique stretches the histograms on either side of the threshold.
After that, the procedure finds the information entropy of both the left and right histograms and adds them together.
The best dynamic separation threshold Ibest is the point at which the highest value of the left and right information
entropies are solved, and the associated separation threshold is used. According to mathematical calculations, the
highest entropy that corresponds to the ideal separation threshold is given by:

-’[-.L-;.-,[ = Eﬂ.l'gmﬂ.’if-’l-',nll’up}-”m]]. l’hl = ['D.. I — ]]

. B Right
. b Teatropy (nt) = Tintropy t) + Tinrapy (Fnt)s (8)

with I Left Entropy(Iht) standing for the information entropy of the left histogram of the optimized global contrast
picture and I Right Entropy(Iht) for the right histogram. Here is how they explain their computation process:

iy
Left
"II-Lanp;.'”hi] = Z pilog; pi.,
i=0
L-1
Right
Ininopy () = — D pilog, pi, ©9)
i=lpy+1

When Iht varies, Pi is the probability of each gray level once the sub-histogram is equalized. Cooperation and mutual
effect are key components of iterative optimization.
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1,(i, j)

(a) (b)

Fig. 4. (a) Example of an integral image. (b) Operation flowcharnt of an
integral image.

of Iy and Iy are mainly reflected as:

Left |  Right
Tug = Iyg U"HE :

IEMNT) = (Ia = Imin) % CDF(T) + Imin.,

T €10, Iul,
Right
Iy (T) = (Imax — la1) x CDF(T) + L.
Telw+1.L-1] (10)

where CDF() denotes the cumulative distribution function of the histogram and Imax and Imin stand for the maximum
and lowest gray levels, respectively. The optimal dynamic range threshold Ibest is obtained by maximizing the
information entropy of the complete histogram, as shown in the above solution method. By maximizing the image
information entropy after histogram equalization, we are able to derive the global contrast enhanced underwater image
(IGE) from the color-corrected underwater picture.

m (k)

Fig. 5.  Raw underwater image and its corresponding results for each core step. From left to right am (a) Raw underwater image, (b) Global
contrast-enhanced image. (c) Approximate low-frequency component, (d) Vertical high-frequency component, (e) Horizontal high-frequency component,
(f) Diagonal high-frequency component, (g) Color comrected image, (h) Local contrast-enhanced image, (i) Approximate low-frequency component, (j) Vertical
high-frequency component, (k) Horizontal high-frequency component, (1) Diagonal high-frequency component, (m) Enhanced underwater image, respectively.

IV. EXPERIMENT AND ANALYSIS

Here, we assess the efficacy of our WWPF approach by conducting comprehensive quantitative and qualitative tests
on a number of industry-standard datasets. Next, we look at the results of the detail augmentation, ablation
experiments, application testing, and generalization performance analyses. Because of space constraints, the majority
of the experimental data are included in the supplemental materials. Alternative Approaches: Our WWPF was
evaluated alongside ten other approaches. These methods included three for image restoration (GDCP [26], DTVR
[6], GIFM [31]), three for image enhancement (CBAF [16], BRUE [33], ADCE [38]), and four for deep learning
(FUnIE-GAN [53], UIEC™2-Net [50], PUIE-Net [55], SGUIE-Net [2]). We utilized the codel that other writers have
duplicated as CBAF [16]'s source code is not accessible to the public. We used the authors' provided programs to
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produce their findings for the following methods: GDCP [26], DTVR [6], GIFM [31], BRUE [33], ADCE [38],
FUnIE-GAN [53], UIEC2-Net [50], PUIE-Net [55], and SGUIE-Net [2]. We have chosen three benchmark datasets—
UCCS [14], UIQS [14], and UIEB [15]—to evaluate the efficacy of our WWPF approach. In order to test how well
various approaches for underwater picture color correcting work, UCCS [14] is divided into three 100-image subsets:
bluish, blue-green, and greenish tones. In order to compare how well various strategies improve visibility in
underwater photographs, UIQS [14] uses 726-image subsets of A, B, C, D, and E degradation levels. In order to test
how well various technologies improve underwater photographs, UIEB [15] compiles 890 images with varying
degrees of deterioration. Criteria for Assessment: Using five widely-used metrics for evaluating image quality—
average gradient (AG) [36], information entropy (IE) [64], edge intensity (EI) [36], underwater color image quality
evaluation metric (UCIQE) [66], and colorfulness contrast fog density index (CCF) [67]—we quantitatively assess
the enhancement performance of various methods. Image clarity is improved with a higher AG [36] score. Images
with higher IE [64] scores have more detailed information. With a higher EI [36] score, the image's texture becomes
more apparent. A higher CCF [67] or UCIQE [66] score indicates that human visual perception is superior. You should
know that UCIQE and CCF scores don't always show how well underwater picture enhancing techniques work. A.
UCCS Dataset Assessment 1) Weighing Qualitatively: The main goal for evaluating the performance of various
approaches in underwater picture quality assessment is the capacity to correct color distortion. As a preliminary step,
we compare how well various approaches fix colors on the UCCS dataset. The structural complexity of the undersea
landscape is severely diminished by the different forms of color distortion, as seen in Figure 6 (a). Unsatisfactory
color correcting performance is achieved using GDCP [26], DTVR [6], and GIFM [31]. SGUIE-Net [2], BRUE [33],
CBAF [16], and FUnIE-GAN [53] all produce distorted colors that aren't desired, such reddish, yellowish, and blue
artifacts. When it comes to underwater photos, UIEC"2-Net [50], PUIE-Net [55], and ADCE [38] all do an excellent
job of correcting color distortions, although ADCE lowers the saturation and detail of the improved underwater image.
In comparison to our WWPF technique, UIEC"2-Net [50] and PUIE-Net [55] perform worse when it comes to detail
and contrast improvement.
To sum up, our WWPF approach is effective in enhancing contrast and texture detail and has a high ability to cure
underwater photographs' many color distortion problems. 2) Quantitative Comparisons: Our WWPF approach
performs well in terms of qualitative assessment when it comes to improving color, texture detail, and contrast. The
benefits of our WWPF are being objectively assessed using evaluation measures at the same time. The scores of
several approaches evaluated on the UCCS [14] dataset are reported in Table [ using the following headings: AG [36],
IE [64], EI [36], UCIQE [66], and CCF [67]. Our WWPF technique also performs well in the quantitative assessment,
as shown in Table I, where it has the top or near-highest scores for AG [36], IE [64], EI [36], UCIQE [66], and CCF
[67]. When applied to the UCCS dataset, our technique yields satisfactory quantitative and qualitative outcomes. B.
Using the UIQS Dataset for Assessment 1) Weighing Qualitatively: We go a step further by comparing the
effectiveness of several approaches to improving the clarity of underwater photos with varying degrees of deterioration
using the UIQS [14] dataset. Figure 7 shows that the majority of the strategies enhance the clarity of underwater photos
from UIQS that have been deteriorated [17]. When it comes to fixing color distortion, GDCP [26], DTVR [6], GIFM
[31], FUnIE-GAN [53], and SGUIE-Net [2] fall short. Certain situations may see the introduction of reddish halos
and local artifacts when using CBAF [16], BRUE [33], or ADCE [38]. The color correction results obtained by
UIEC"2-Net [50], PUIE-Net [55], and our WWPF are all good. When it comes to improving contrast, UIEC™2-Net
[50] and PUIE-Net [55] are stronger than GDCP [26], DTVR [6], GIFM [31], FUnIE-GAN [53], and SGUIE-Net [2].
In terms of contrast improvement, CBAF [16], BRUE [33], and ADCE [38] outperform UIEC"2-Net [50] and PUIE-
Net [55]. In contrast, ADCE [38], BRUE [33], and CBAF [16] could obliterate texture features or cause local artifacts.
When compared to the aforementioned approaches, our WWPF approach successfully improves color correction,
contrast improvement, and detail sharpening.
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{a) Raw image (k) GDCP [26] (c) DTVR [6] (d) GIFM [31] (e) CBAF [16] (f) BRUE [33]

(g) ADCE [38] (h) FUnlE-GAN [53] (i) UIEC 2-Net [50] () PUIE-Met [55] (k) SGUIE-Net [2] (1) WWPF
Fig. 6. Visual comparisons on three underwater images with color casts sampled from the UCCS [14] dataset. From top to bottom are samples of
blue, blue-green, and green distorted underwater images.

QUANTITATIVE EvaLuaTION SCORES OF OUR WWPF METHOD WITH THE COMPARED METHODS TESTED ON THE UCCS [14], UIQS [14]. AND

UIEB [15] DATASETS. THE HIGHEST QUANTITATIVE SCORES ARE MARKED IN RED, WHILE THE SECOND-HIGHEST SCORES ARE MARKED IN BLUE
Method TCCS [14] U105 (1] UIEE [15]

i AGT 1ET EIT UCIQET  COFT AGT TET EIT TCIQET  COFT AGT IET EIT UCIQET  CCFT

GDUP [2h 5604 71158 53,349 EED] CARIT ] SR T4y SUART 10,5300 ZIED | Sebd TISE SRR 01,530 TIEIT | 1R6RT

DITVE [6] TAAT TR0 75368 383 F10a6 | 7917 7543 q9gsl 0.507 AT | TAT O TeR0 TEIAR 01608 3205h | 25064

Mlean

GIFM [31] 338 TEA ARl 1484 23624 | 3816 7557 J0TIE 1,573 2Ta07 RIS TAIe T ENAAES 0,567 IhAIT | 1575
CEAI [16] A6 TRI ALGED [EED) 0738 | 6TIT 759 AT3AI .55 0687 | 6564 7631 6E 090 01,580 0736 | 20363
BEUL [33] UEEA  T7BZ  UTOET 1 585 30560 | TO08T 7755 T ST 0,594 0643 | BE¥e TTHI  YT.0EY 0,553 30360 | 289400

ADCE [38] 9276  TA68 01337 0327 26876 | 69394 TAS1 UEAIT 10.528 16814 | 9378 T6EE  BI33T 0.527 I6.976 | 27.515
FURIE-GAR [33] | 3711 7420 37513 0497 16499 | 5748 7434 305 0510 1783 [ 3711 7420 3THI3 0357 L6440 | 13347
UIEC™Z-Net [30] | 5708 7586 36,804 0362 19704 | 6013 7580 AOTIR 1,568 20278 | 3708 T.5BA  3ABM 0,562 19.709 [ 18350

FUIE-Net [33] 4913 7506 49444 0.516 195360 | 52427 7423 53473 10.538 20,521 | 6044 T5E3 60MD 0581 21393 | 17.666
SGUIE-Net [I] 5641 7595 36.952 1 360 23706 | 3836 7511 39405 1,565 23614 | 7451 TAW  T4.102 0614 31662 | 20833
WWEF 9403 7806 93357 [ 3730 | 909 7785 DRT0G 10.595 36767 | I0EIR  T.6B4 105982 0.617 40.851 | 31.127

2) Comparing Quantitatively: The results of several technique tests on the UIQS [14] dataset are shown in Table I,
which includes the scores for AG [36], IE [64], EI [36], UCIQE [66], and CCF [67]. The quantitative examination of
the complete UIQS [14] dataset shows that our WWPF approach has the best score, or very close to it, as shown in
Table 1. From a qualitative and quantitative standpoint, our WWPF technique outperforms the alternatives when
evaluating underwater photos with varying degrees of deterioration. C. Assessment Using the UIEB Dataset
1) Weighing Qualitatively: We quantitatively compare our technique to other ways using the UIEB [15] dataset to
further assess the enhancing performance of our WWPF method for various forms of underwater picture deterioration.
To thoroughly test the improved performance of our WWPF approach, we used blurred, green-distorted, and blue-
distorted underwater photos (Fig. 8 (a)). No amount of color correction can fix an underwater picture that is green-
distorted using GDCP[26], GIFM[31], or FUnIE-GAN [53]. There are several issues with the color correction results
and the introduction of local artifacts in DTVR [6], ADCE [38], and PUIE-Net [55].
While UIEC™2-Net [50], SGUIE-Net [2], CBAF [16], and BRUE [33] are effective in correcting green distortion, they
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all add a small red distortion. Better removal of the green distortion is achieved with our WWPF approach, and no
extra

(a} Raw image (b) GDCP [26] (dy GIFM [31] {e) CBAF [16]

(g) ADCE [3%] (h) FURIE-GAN [53] (i) UIEC™2-Net [50]

(I} WWFF

(j) PUIE-Net [55] (k) SGUIE-Net [2]

Fig. 7. Visual comparisons on underwater images with different levels of degradation sampled from the UIQS [14] dataset. From top to bottom are
samples of underwater images with quality levels A, C, and D.

seems quite reddish. The color distortion problem is worsened for underwater images with blue distortion when using
GDCP [26], DTVR [6], GIFM [31], and FUnIE-GAN [53]. No amount of tweaking can fix the blue distortion in the
backdrop with CBAF [16], UIEC™2-Net [50], or PUIE-Net [55]. While BRUE [33], ADCE [38], and SGUIE-Net [2]
do a decent job of correcting colors, our WWPF outperforms them when it comes to improving texture detail and
contrast. The deblurring capabilities of GDCP [26], FUnIE-GAN [53], PUIE-Net [55], and SGUIE-Net [2] are
inadequate for underwater images that are blurry. The deblurring effects of GIFM [31], CBAF [16], BRUE [33], and
UIEC™2-Net [50] are satisfactory, but the texture details they increase are inadequate. We found that our WWPF
performs better at deblurring and improving texture details compared to ADCE [38], which loses texture details, while
DTVR [6] presents the overexposure issue. 2) Analyzing Data Quantitatively: Scores for AG[36], IE[64], EI[36],
UCIQE[66], and CCF[67] from various methodologies evaluated on the UIEB [15] dataset are shown in Table I.
According to Table I, our WWPF got the highest quantitative score, or very close to it. Our WWPF also outperforms
the competition on the UCCS[14], UIQS[14], and UIEB [15] datasets in terms of total mean quantitative score. For
all three benchmark datasets, our WWPF produces respectable quantitative and qualitative outcomes.
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(g) ADCE [38] {} FUnIE-GAN [53] (i) UTEC™2-Net [50] {j) PUIE-Net [55] (k) SGUIE-Net [2] Iy WWFF

Fig. 8. Visual comparisons on underwater images of different degradation types sampled from the UIEB dataset [15]. From top to bottom are
green-distorted, blue-distorted, and blurmed underwater images.

(z) ADCE [38] (h) FUnlE-GAN [53] (1) ULEC"2-Net [50] {j) PUIE-Net [55] (k) SGUIE-Net [2] (1) WWPF

ig. 9. Texture detail enhancement comparisons on a typical underwater image with bluish and low visibility sampled from the UIEB [15] dataset.

our WWPF technique unaffected by AMGCC; (b) our WWPF method unaffected by optimized global contrast; (c)
our WWPF method unaffected by optimized local contrast; and (d) our WWPF method unaffected by weighted
wavelet fusion. Our visual findings of evaluating the WWPF approach on the UCCS [14], UIQS [14], and UIEB [15]
datasets are reported in Fig. 10. You can see the findings visually in Fig. 10. Here they are: 1) Without AMGCC,
underwater images are more visible, but color correction and local contrast enhancement are not as effective. 2)
Without OGC, local contrast enhancement is great, but global contrast enhancement could use some work. 3) Without
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OLC, global contrast enhancement is effective, but local contrast enhancement is lacking. 4) Without WWF, fusing
global and

(e)

Fig. 10. Ablation results of each core module of our WWFPF method test on the UCCS [14], UIQS [14], and UIEB [15] datasets. (a) Raw underwater
images. (b) -w/fo AMGCC. (c) -w/o OGC. (d) -w/o OLC. (e) -w/o WWE () WWPF (full model).

TABLE I
ABLATION STUDIES OF DIFFERENT MODULES TESTED ON THE UCCS [14], UIQS [14], axp ULEB [15] DaTASETS. THE HIGHEST
QUANTITATIVE SCORES ARE MARKED IN RED, WHILE THE SECOND-HIGHEST SCORES ARE MARKED IN BLUE

Ablated models ULCS [14] UT08 (1] UIER [15]
AGT IR FEF UCIQET  CCFF [ ADT  TFF  Ff  UCIFf  OOFf [ A0T T EF UCIET  O0FF
-win AMGUOC 5455 T8 53540 0.465 18294 | 6013 7282 G171 0487 200,798 B.655 T7.523 B4 5000 10573 33066
“wio DGC U6l 7900 U508 0575 29072 | D887 7692 OUZ60 0581 20838 | 08T 766 14165 UA0D  3EIE
~win QLC 0761 7,795 77395 0577 29367 | A955 7032 0925 (0.583 30,425 7801 7732 TT05 0608 13530
-win WWE 3543 3948 33003 0454 19,191 3772 4208 38477 0458 21.501 4874 EXH 48027 04749 24 835
WWEF (ull model) | D203 7806 G3.557 0588 34750 | 0008 7785 09796 (505 36767 | 10818 7684 105582 067 A8

(b)

(c) (d)
Fig. 11.  Examples of key feature point matching before and after
underwater images are enhanced. (a) and (b) represent the matching results
of key feature points of the raw underwater image pairs. (c) and (d) represent

the key feature point matching results of the raw underwater image pairs
enhanced by our method.
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Fig. 12, Visual results of our method for enhancing foggy, low light,
and remote sensing images. Two pairs from top to bottom ame the foggy
images, the images defogged by our method, the low light images, the low
light images enhanced by our method, the remote sensing images, and the
remote sensing enhanced by our method, respectively.

V. CONCLUSION

Here, we lay out the plan for improving underwater images. Among the primary components of our approach are
weighted wavelets of various improved underwater pictures, color correction, and optimization of both global and
local contrast. To compensate for the differences in global and local contrast as well as texture characteristics across
pictures of various improved versions, we use weighted wavelet fusion. Our WWPF showed strong generalizability
and exceptional enhancement capabilities on three benchmark datasets, according to quantitative and qualitative tests.
Our WWPF does a good job of producing respectable results, however it falls short when it comes to suppressing
picture noise when compared to other approaches. Accordingly, in further studies, we will investigate methods for
efficient noise suppression that do not compromise the improved performance of our WWPF approach.
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