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Abstract: Research on damage detection of road sur- 

faces using image processing techniques has been actively 

conducted. This study makes three contributions to ad- 

dress road damage detection issues. First, to the best of 

our knowledge, for the first time, a large-scale road dam- 

age data set is prepared, comprising 9,053 road damage 

images captured using a smartphone installed on a car, 

with 15,435 instances of road surface damage included 

in these road images. Next, we used state-of-the-art ob- 

ject detection methods using convolutional neural net- 

works to train the damage detection model with our data 

set, and compared the accuracy and runtime speed on 

both, using a GPU server and a smartphone. Finally, we 

demonstrate that the type of damage can be classified into 

eight types with high accuracy by applying the proposed 

object detection method. The road damage data set, 

our experimental results, and the developed smartphone 

application used in this study are publicly available 

(https://github.com/sekilab/RoadDamageDetector/). 

 

1 INTRODUCTION 

 

During the period of high economic growth in Japan 

from 1954 to 1973, infrastructure such as roads, bridges, 

and tunnels were constructed extensively; however, 

because many of these were constructed more than 

50 years ago (Ministry of Land, Infrastructure, Trans- 

port and Tourism, 2016), they are now aged, and the 

number of structures that are to be inspected is expected 

to increase rapidly in the next few decades. In addition, 

the discovery of the aged and affected parts of infras- 

tructure has thus far depended solely on the expertise of 

veteran field engineers. However, owing to the increas- 

ing demand for inspections, a shortage of field techni- 

cians (experts) and financial resources has resulted in 

many areas. In particular, the number of municipalities 

 

that have neglected conducting appropriate inspections 

owing to the lack of resources or experts has been in- 

creasing (Tomiyama et al., 2013). The United States also 

has similar infrastructure aging problems (AASHTO, 

2008). Indeed, the prevailing problems in infrastructure 

maintenance and management are likely to be expe- 

rienced by countries all over the world. Considering 

this negative trend in infrastructure maintenance and 

management, it is evident that efficient and sophisti- 

cated infrastructure maintenance methods are urgently 

required. 

In response to this problem, many methods to ef- 

ficiently inspect infrastructure, especially road condi- 

tions, have been studied, such as methods using laser 

technology or image processing. Moreover, there are 

several studies using neural networks for civil engi- 

neering problems in the 11 years from 1989 to 2000 

(Adeli, 2001). Furthermore, recently, computer vi- 

sion and machine learning techniques have been suc- 

cessfully applied to automate road surface inspection 

(Chun et al., 2015; Zalama et al., 2014; Jo and Ryu, 

2015). 

However, thus far, with respect to methods of inspec- 

tions using image processing, we believe these methods 

suffer from three major disadvantages: 

 

 

(1) There is no common data set for a comparison 

of results; in each research, the proposed method 

is evaluated using its own data set of road dam- 

age images. Motivated by the field of general ob- 

ject recognition, wherein large common data sets 

such as ImageNet (Deng et al., 2009) and PAS- 

CAL VOC (Everingham et al., 2015) exist, we 

believe there is a need for a common data set on 

road scratches. 

(2) Although current state-of-the-art object detec- 

tion methods use end-to-end deep learning
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techniques, no such method exists for road dam- 

age detection. 

(3) Though road surface damage is distinguished into 

several categories (in Japan, eight categories ac- 

cording to the Road Maintenance and Repair 

Guidebook 2013; JRA, 2013), many studies have 

been limited to the detection or classification of 

damage in only the longitudinal and lateral di- 

rections (Chun et al., 2015; Zalama et al., 2014; 

Zhang et al., 2016; Akarsu et al., 2016; Maeda 

et al., 2016). 

 

 

Therefore, it is difficult for road managers to ap- 

ply these research results directly in practical scenarios. 

Considering these disadvantages, in this study, we de- 

velop a new, large-scale road damage data set, and then 

train and evaluate a damage detection model that is 

based on the state-of-the-art convolutional neural net- 

work (CNN) method. 

The contributions of this study are as follows. 

 

 

(1) We created and released 9,053 road damage im- 

ages containing 15,435 instances of damage. The 

data set contains the bounding box of each class 

for the eight types of road damage. Each image 

is extracted from an image set created by captur- 

ing pictures of a large number of roads obtained 

using a vehicle-mounted smartphone. The 9,053 

images of the data set contain a wide variety of 

weather and illuminance conditions. In addition, 

in assessing the type of damage, the expertise of 

a professional road administrator was employed, 

rendering the data set considerably reliable. 

(2) Using our developed data set, we evaluated the 

state-of-the art object detection method based 

on deep learning and generated benchmark re- 

sults. All the trained models are also pub- 

licly available on our Web site (https://github. 

com/sekilab/RoadDamageDetector/). 

(3) Furthermore, we showed that the type of damage 

from among the eight types can be identified with 

high accuracy. 

 

 

The rest of the article is organized as follows. In Sec- 

tion 2, we discuss the related works. Details of our 

new data set are presented in Section 3. The experi- 

mental settings are explained in Section 4. Then, the 

results and the discussion are provided in Sections 5 

and 6, respectively. Finally, Section 7 concludes the 

article. 

2 RELATED WORKS 

 

2.1 Road damage detection using image processing 

Several attempts have been made to develop a method 

for analyzing road properties by using a combination 

of recordings by in-vehicle cameras and image pro- 

cessing technology to more efficiently inspect a road 

surface. For example, a previous study proposed an 

automated asphalt pavement crack detection method 

using image processing techniques and a naive Bayes- 

based machine-learning approach (Chun et al., 2015). 

In addition, a pothole detection system using a commer- 

cial black-box camera has been previously proposed (Jo 

and Ryu, 2015). In recent times, it has become possi- 

ble to quite accurately analyze the damage to road sur- 

faces using deep neural networks (Zhang et al., 2016; 

Maeda et al., 2016; Zhang et al., 2017; Fan et al., 2018). 

For instance, Zhang et al. (2017) introduced CrackNet, 

which predicts class scores for all pixels. However, such 

road damage detection methods focus only on the de- 

termination of the existence of damage. Though some 

studies do classify the damage based on types—for ex- 

ample, Zalama et al. (2014) classified damage types 

vertically and horizontally, and Akarsu et al. (2016) 

categorized damage into three types, namely, verti- 

cal, horizontal, and crocodile—most studies primar- 

ily focus on classifying damages between a few types. 

There are other studies that detect blurry road mark- 

ings (Kawano et al., 2017), and classify the cracks 

and sealed cracks (Zhang et al., 2018). Therefore, for 

a practical damage detection model for use by mu- 

nicipalities, it is necessary to clearly distinguish and 

detect different types of road damage; this is because, 

depending on the type of damage, the road administra- 

tor needs to follow different approaches to rectify the 

damage. 

Furthermore, the application of deep learning for 

road surface damage identification has been proposed 

by a few studies, for example, studies by Maeda et al. 

(2016) and Zhang et al. (2016). However, the method 

proposed by Maeda et al. (2016), which uses 256 × 
256 pixel images, identifies the damaged road surfaces, 

but does not classify them into different types. In ad- 

dition, the method of Zhang et al. (2016) identifies 

whether damage occurred exclusively using a 99 × 99 

patch obtained from a 3,264 × 2,448 pixel image. Fur- 

ther, a 256 × 256 pixel damage classifier is applied using 

a sliding window approach (Felzenszwalb et al., 2010) 
for 5,888 × 3,584 pixel images to detect cracks on the 

concrete surface (Cha et al., 2017). In these studies, 

classification methods are applied to input images and 

damage is detected. Recently, it has been reported that 

object detection using end-to-end deep learning is more 
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accurate and has a faster processing speed than using a 

combination of classification methods; this will be dis- 

cussed in detail in Section 2.4. As an example of a 

method using end-to-end deep learning performing bet- 

ter than tradition methods, white line detection based 

on end-to-end deep learning using OverFeat (Sermanet 

et al., 2013) outperformed a previously proposed empir- 

ical method (Huval et al., 2015). However, to the best of 

our knowledge, no example of the application of end-to- 

end deep learning method for road damage detection 

exists. It is important to note that classification refers 

to labeling an image rather than an object, whereas de- 

tection means assigning an image a label and identifying 

the object’s coordinates as exemplified by the ImageNet 

competition (Deng et al., 2009). The term “end-to-end” 

indicates that input and output relationships are trained 

directly with a single model. 

Therefore, considering this, we apply the end-to-end 

object detection method based on deep learning to the 

road surface damage detection problem, and verify its 

detection accuracy and processing speed. In particu- 

lar, we examine whether we can detect eight classes of 

road damage by applying state-of-the-art object detec- 

tion methods (discussed in Section 2.4) with the newly 

created road damage data set (explained in Section 3). 

Although many excellent methods have been proposed, 

such as segmentation of cracks on concrete surfaces 

(O’Byrne et al., 2014; Nishikawa et al., 2012) and metal- 

lic surfaces (Chen et al., 2017), our research uses an 

object detection method. Indeed, although there is re- 

search that uses deep learning to evaluate the stability 

of structures using sensor data (Rafiei and Adeli, 2017, 

2018; Lin et al., 2017; Rafiei et al., 2017), in this article, 

we concentrate on detecting road surface damage using 

image processing. 

 

2.2 Road damage detection using smartphones 

In general, vehicles designed specifically for road in- 

spection are expensive. Meanwhile, mobile devices such 

as smartphones have made remarkable progress in 

recent years, and examples of road inspection using 

smartphone sensors are increasingly common. Using a 

smartphone is advantageous insofar as it is possible to 

inspect the road surface cheaply and exhaustively. For 

example, Buttlar and Islam (2014) proposed a method 

to measure the flatness of a road using the accelerom- 

eter of a smartphone installed in a car. Furthermore, 

Casas-Avellaneda and Lo´ pez-Parra (2016) proposed a 

method that visualizes (on a map) potholes detected 

by smartphone sensors. In addition, Mertz et al. (2014) 

proposed a method to handle road images acquired by 

on-board smartphones installed on cars that operate on 

a daily basis, such as general passenger automobiles, 

buses, and garbage trucks, to detect road surface dam- 

age with an external laptop. 

To the best of our knowledge, however, there is no 

research on processing road images acquired by smart- 

phones to detect road damage. Therefore, we demon- 

strate that using end-to-end deep learning is feasible for 

processing such images. 

 

2.3 Image data set of road surface damage 

Although an image data set of the road surface exists, 

called the KITTI data set (Geiger et al., 2013), it is pri- 

marily used for applications related to automated driv- 

ing. There is also the GAP data set for road damage 

detection with features of around 2,000 high-resolution 

images with manually annotated damage (six classes) 

(Eisenbach et al., 2017). To the best of our knowledge, 

the GAP data set is the only publicly available data 

set for road damage detection. In all the studies focus- 

ing on road damage detection described in Section 2.1, 

the researchers independently proposed unique meth- 

ods using acquired road images. Therefore, a compari- 

son between the methods presented in these studies is 

difficult. 

Furthermore, according to Mohan and Poobal (2017), 

there are few studies that construct damage detection 

models using real data, and 20 of these studies use road 

images taken directly from above the road. For instance, 

the images of the GAP data set were taken from above 

the road. In fact, it is difficult to reproduce the road 

images taken from directly above, because doing so in- 

volves installing a camera outside the car body, which, 

in many countries, is a violation of the law; in addition, 

it is costly to maintain a dedicated car solely for road 

images. 

Therefore, we have developed a data set of road 

damage images using the road images captured using 

a smartphone on the dashboard of a general passenger 

car; in addition, we made this data set publicly available. 

There are five times more road images in this data set 

than in the GAP data set. Moreover, we show that road 

surface damage can be detected with considerably high 

accuracy even with images acquired by employing such 

a simple method. 

 

2.4 Object detection system 

In a CNN-based object detection method such as R- 

CNN (Region-based Convolutional Neural Networks; 

Girshick et al., 2014) and Fast R-CNN (Girshick, 2015), 

it is necessary to obtain the object candidate region 

in advance by using another method, such as selec- 

tive search (Uijlings et al., 2013) or BING (Bina- 

rized Normed Gradients; Cheng et al., 2014). For this 

http://www.ijasem.org/


        ISSN 2454-9940 

      www.ijasem.org 

    Vol 19, Issue 1, 2025 

 

 

  

1207 

 

 

reason, the process is slow and the judgment accu- 

racy is relatively low, insofar as it is a two-stage pro- 

cess (i.e., the candidate area is detected and the de- 

tected area is classified by a CNN). On the other 

hand, Faster R-CNN (Ren et al., 2015) makes it pos- 

sible to train the model end-to-end, and the accuracy 

of determination and the execution speed can be im- 

proved by using the Region Proposal Network, which 

performs object candidate region detection. Further- 

more, rather than cropping features from the same layer 

where the region proposals are predicted—as in the case 

of the Faster R-CNN method—the R-FCN (Region- 

based Fully Convolutional Networks) method proposed 

by Dai et al. (2016) crops from the last layer of fea- 

tures prior to prediction. This approach of pushing crop- 

ping to the last layer minimizes the amount of per- 

region computation that must be performed. Dai et al. 

(2016) showed that their R-FCN model (using Resnet 

101) could achieve accuracy comparable to Faster R- 

CNN, and often at faster running speeds. Although 

the processing speed has been greatly improved by the 

above method, the computational load is somewhat 

large when processing images from modern mobile 

devices. 

YOLO (You Only Look Once) (Redmon et al., 

2016; Redmon and Farhadi, 2017) is an object detection 

framework that can achieve high mean average preci- 

sion (mAP) and speed. In addition, YOLO can predict 

the region and class of objects with a single CNN. An 

advantageous feature of YOLO is that its processing 

speed is considerably fast, because it solves the problem 

as a mere regression, detecting objects by considering 

background information. The YOLO algorithm outputs 

the coordinates of the bounding box of the object can- 

didate and the confidence of the inference after receiv- 

ing an image as input. Furthermore, SSD (Single Shot 

MultiBox Detector; Liu et al., 2016) is an object detec- 

tion framework that uses a single feed-forward convo- 

lutional network to predict classes directly and anchor 

offsets without requiring a second stage per proposal 

classification operation. The key feature of this frame- 

work is the use of multiscale convolutional bounding 

box outputs attached to multiple feature maps at the 

top of the network. With this key feature, SSD is fast 

and has fewer errors than YOLO. In this research, SSD 

is adopted as a training algorithm for processing images 

from a mobile terminal. 

 

2.5 Feature extractor 

In all these object detection systems, a convolutional 

feature extractor as a base network is applied to the in- 

put image to obtain high-level features. The selection of 

the feature extractor is considerably important because 

the number of parameters and layers, the type of layers, 

and other properties directly affect the performance of 

the detector. Darknet-19 (Redmon and Farhadi, 2017) 

is a base model of the YOLO framework. The model 

has 19 convolutional layers and five maxpooling lay- 

ers. Furthermore, VGG 16 (Simonyan and Zisserman, 

2014) is a CNN with a total of 16 layers consisting of 

13 convolution layers and three fully connected layers 

proposed in the ImageNet Large Scale Visual Recogni- 

tion Challenge (ILSVRC) in 2014. This model achieved 

good results in ILSVRC and COCO 2015 (classification, 

detection, and segmentation) considering the depth of 

the layers. 

Resnet (He et al., 2016), which refers to Deep Resid- 

ual Learning, is a structure for deep learning, partic- 

ularly for CNNs, that enables high-precision learning 

in a very deep network; it was released by Microsoft 

Research in 2015. Accuracy beyond human ability was 

obtained by learning images with 154 layers. Resnet 

achieved an error rate of 3.57% with the ImageNet test 

set and won the first place in the ILSVRC 2015 classifi- 

cation task. Although Resnet has extremely high accu- 

racy, it takes considerable time to process, because the 

layer is deep. On the other hand, Inception V2 (Ioffe 

and Szegedy, 2015) and Inception V3 (Szegedy et al., 

2016) can increase the depth and breadth of the net- 

work without increasing the number of parameters or 

the computational complexity, by introducing so-called 

inception units. By adding an inception layer, the cal- 

culation process is reduced. MobileNet (Howard et al., 

2017) has succeeded in further suppressing the amount 

of calculation and has been shown to achieve accuracy 

comparable to VGG-16 on ImageNet with only 1/30th 

of the computational cost and model size. MobileNet 

is designed for efficient inference in various mobile 

vision applications. Its building blocks are depthwise- 

separable convolutions that factorize a standard convo- 

lution into a depthwise convolution and a 1 × 1 con- 

volution, effectively reducing both the computational 

cost and the number of parameters. These five feature 

extractors are widely used in the field of computer vi- 

sion. According to Huang et al. (2017), Inception V2 

and MobileNet offer the fastest processing speeds with 

relatively high determination accuracy. Therefore, we 

selected Inception V2 and MobileNet to evaluate our 

results (see Section 5). 

 

 

 

3 PROPOSED DATA SET 

 

In this section, we describe our proposed new data set, 

including how the data were obtained, how it was anno- 

tated, its contents, and issues related to privacy. 
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Fig. 1. Installation setup of the smartphone on the car. It is 

mounted on the dashboard of a general passenger car. Our 

developed application can capture a photograph of the road 

surface approximately 10 m ahead, which indicates that this 

application can photograph images while traveling on the 

road without leakage or duplication when the car moves at an 

average speed of about 40 km/h (about 10 m/s) if 

photographing every second. In addition, it can detect road 

damages in 1.5 seconds with high accuracy (see Section 5). 

 

3.1 Data collection 

Thus far, in the study of damage detection on the road 

surface, images are either captured from above the road 

surface or using on-board cameras on vehicles. When 

models are trained with images captured from above, 

the situations that can be applied in practice are limited, 

considering the difficulty of capturing such images. 

In contrast, when a model is constructed with images 

captured from an on-board vehicle camera, it is easy to 

apply these images to train the model for practical sit- 

uations. For example, using a readily available camera 

like on smartphones and general passenger cars, any in- 

dividual can easily detect road damages by running the 

model on the smartphone or by transferring the images 

to an external server and processing it on the server. 

We selected seven local governments in Japan (Ichi- 

hara city, Chiba city, Sumida ward, Nagakute city, 

Adachi ward, Muroran city, and Numazu city) and 

cooperated with the road administrators of each lo- 

cal government to collect 163,664 road images. We 

traveled through every municipality covering approx- 

imately 1,500 km in total. Seven municipalities have 

snowy areas and urban areas that are very diverse in 

terms of regional characteristics such as the weather and 

fiscal constraints. 

We installed a smartphone (LG Nexus 5X) on the 
dashboard of a car, as shown in Figure 1, and pho- 

tographed images of 600 × 600 pixels once per sec- 

ond. The reason we select a photographing interval of 

1 second is because it is possible to photograph images 

while traveling on the road without leakage or duplica- 

tion when the average speed of the car is approximately 

40 km/h (or approximately 10 m/s). For this purpose, 

we created a smartphone application that can capture 

images of the roads and record the location information 

once per second; this application is also publicly avail- 

able on our Web site. 

 

3.2 Data category 

Table 1 lists the different damage types and their defi- 

nition. In this article, each damage type is represented 

with a class name such as D00. Each type of damage is 

illustrated in the examples in Figure 2. 

As can be seen from the table, the damage types 

are divided into eight categories. First, the damage is 

classified into cracks or other corruptions. Then, the 

cracks are divided into linear cracks and alligator cracks 

(crocodile cracks). Other corruptions include not only 

potholes and rutting, but also other road damage such 

as blurring of white lines. 

To the best of our knowledge, no previous research 

covers such a wide variety of road damages, especially in 

the case of image processing. For example, the method 

proposed by Jo and Ryu (2015) detects only potholes in 

Table 1 

Road damage types in our data set and their definitions 
 

Damage type Detail Class name 

 

Longitudinal 
Wheel mark part D00 
Construction joint part D01 

Linear crack  
Equal interval D10 

Crack Lateral 
Construction joint part D11 

Alligator crack Partial pavement, overall pavement D20 

Rutting, bump, pothole, separation  D40 

Other corruption Crosswalk blur D43 

White line blur D44 
 

Source: Road Maintenance and Repair Guidebook 2013 (JRA, 2013) in Japan. 

Note: In reality, rutting, bumps, potholes, and separations are different types of road damage, but it is difficult to distinguish these four types using 

images. Therefore, they were classified as one class, namely, D40. 
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(a) D00 (b)D01 (c) D10 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

(d) D11 (e) D20 (f) D40 

 
 
 
 
 
 
 
 
 

 

(g) D43 (h) D44 (i) Classname 

D00 : Linear crack, longitudinal, 

wheel mark part 

D01 : Linear crack, longitudinal, 

construction joint part 
D10 : Linear crack, lateral, 

equal interval 

D11 : Linear crack, lateral, 

construction joint part 

D20 : Alligator crack 
D40 : Rutting, bump, pothole, separation 

D43 : Cross walk blur 

D44 : White line blur 

 

 
Fig. 2. Sample images of our data set: (a)–(h) correspond to each one of the eight categories, and (i) shows the legend. Our 

benchmark contains 163,664 road images and of these, 9,053 images include cracks. These 9,053 images were annotated with class 

labels and bounding boxes. The images were captured using a smartphone camera in realistic scenarios.  
 

D40, and that of Zalama et al. (2014) classifies damage 

types exclusively as longitudinal and lateral, whereas 

the method proposed by Akarsu et al. (2016) catego- 

rizes damage types into longitudinal, lateral, and alliga- 

tor cracks. Further, the previous study using deep learn- 

ing (Maeda et al., 2016; Zhang et al., 2016) only detects 

the presence or absence of damage. Further, although 

the GAPs data set (Eisenbach et al., 2017) treats the 

crack as a crack, in our data set, the cracks are classi- 

fied into five types. 

 

3.3 Data annotation 

The collected images were then annotated manually. 

We illustrate our annotation pipeline in Figure 3. Be- 

cause our data set format is designed in a manner similar 

to the PASCAL VOC (Everingham et al., 2010, 2015), 

it is easy to apply it to many existing methods used in 

the field of image processing. 

 

 

3.4 Data statistics 

Our data set is composed of 9,053 labeled road damage 

images. Of these 9,053 images, 15,435 bounding boxes 

of damage are annotated. Figure 4 shows the number 

of instances per label that were collected in each mu- 

nicipality. We photographed a number of road images 

in various regions of Japan, but could not avoid bias- 

ing some of the data. For example, damages such as 
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Fig. 3. Annotation pipeline. First, the bounding box is drawn. Then, the class label is attached. Next, expert road managers 

checked them. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Number of damage instances in each class in each municipality. We can see that the distribution of damage type differs for 

each local government. For example, in Muroran city, there are many D20 damages (1,192 damages) compared to other 

municipalities. This is because Muroran city is a snowy zone, therefore, alligator cracks tend to occur during the thaw of snow. 

 

D40 pose a more significant danger, and therefore, road 

managers repair these damages as soon as they occur; 

thus, there are not many instances of D40 in reality. In 

many studies, the blurring of white lines is not consid- 

ered to be damage; however, in this study, white line 

blur is also considered as damage. In summary, our new 

data set includes 9,053 damage images and 15,435 dam- 

age bounding boxes. The resolution of the images is 600 

× 600 pixels. The area and the weather in the area are 

diverse, and thus, the data set closely resembles the real 

world. We used this data set to evaluate the damage de- 

tection model. 

 

3.5 Privacy matters 

Our data set is openly accessible by the public. There- 

fore, considering issues with privacy, based on visual in- 

spection, when a person’s face and a car license plate 

are clearly reflected in the image, they are blurred out. 

 

 

4 EXPERIMENTAL SETUP 

 

Based on a previous study in which many neural net- 

works and object detection methods were compared 

in detail (Huang et al., 2017), among the state-of-the- 

art object detection methods, the SSD using Inception 

V2 and SSD using MobileNet are those with relatively 

small CPU loads and low memory consumption, even 

while maintaining high accuracy. However, it is impor- 

tant to note that the results of the abovementioned re- 

search were obtained using the COCO data set (Lin 

et al., 2014). Because we believe that an object detec- 

tion method that can be executed on a smartphone (or a 
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Table 2 

Detection and classification results for each class 
 

 
D00 D01 D10 D11 D20 D40 D43 D44 

Recall of SSD Inception V2 0.22 0.60 0.10 0.05 0.68 0.03 0.81 0.62 

Precision of SSD Inception V2 0.73 0.84 0.99 0.95 0.73 0.67 0.77 0.81 

Accuracy of SSD Inception V2 0.78 0.80 0.94 0.92 0.85 0.95 0.95 0.83 

Recall of SSD MobileNet 0.40 0.89 0.20 0.05 0.68 0.02 0.71 0.85 

Precision of SSD MobileNet 0.73 0.64 0.99 0.95 0.68 0.99 0.85 0.66 

Accuracy of SSD MobileNet 0.81 0.77 0.92 0.94 0.83 0.95 0.95 0.81 

 

 

small computational resource) is desirable, in this study, 

we trained the model using the SSD Inception V2 and 

SSD MobileNet frameworks. 

We analyze the cases of applying the SSD using In- 

ception and SSD using MobileNet to our data set in de- 

tail. 

 

 

4.1 Parameter settings 

In the object detection algorithm using deep learning, 

the parameters learned from the data are enormous; in 

addition, the number of hyper parameters set by hu- 

mans is large. The parameter setting in the case of each 

algorithm is described below. 

 

4.1.1 SSD using Inception V2. We followed the 

methodology mentioned in the original paper (Liu 

et al., 2016). The initial learning rate is 0.002, which 

is reduced by a learning rate decay of 0.95 per 10,000 

iterations. The input image size is 300 × 300 pixels, 

which indicates that the original images are resized 

from 600 × 600 to 300 × 300. 

 

4.1.2 SSD using MobileNet. As in the previous case, we 

followed the methodology mentioned in the original pa- 

per (Liu et al., 2016) as well. Similar to Huang et al. 

(2017), we initialize the weights with a truncated nor- 

mal distribution with a standard deviation of 0.03. The 

initial learning rate is 0.003 with a learning rate decay of 

0.95 every 10,000 iterations. The input image size in this 

case is 300 × 300 pixels as well. 

 

4.2 Training and evaluation 

We conducted training and evaluation using our data 

set. For our experiment, the data set was randomly di- 

vided in a ratio of 8:2; the former part was set as train- 

ing data, and the latter as evaluation data. Thus, the 

training data included 7,240 images, and the evaluation 

data had 1,813 images. During training, the images were 

randomly flipped horizontally for data augmentation, 

and this was done with a probability of 0.5. 

 

 

 

5 RESULTS 

 

In our experiment, training was performed on a PC 

running the Ubuntu 16.04 operating system with an 

NVIDIA GRID K520 GPU and 15 GB RAM mem- 

ory using TensorFlow. In the evaluation, the Intersec- 

tion Over Union threshold was set to 0.5. The detected 

samples are illustrated in Figures 5 and 6. 

We compared the results provided by the SSD Incep- 

tion V2 and SSD MobileNet. These results are listed in 

Table 2. Although D01 and D44 were detected with rel- 

atively high recall and precision, the value of recall is 

low in the case of D11 and D40; this can be attributed 

to the number of training data (see Figure 4). On the 

contrary, D43 was detected with high recall and preci- 

sion even though the number of training data is small; 

this is because D43 (blur of the pedestrian crossing) oc- 

cupies a large proportion in the image and the feature 

is clear (i.e., stripped pattern). When paying attention 

to the value of Recall, MobileNet exceeds Inception in 

six categories, except D40 and D43. Overall, the SSD 

MobileNet yields better results. 

To better understand the detection results, we con- 

ducted error analysis. The errors were classified as 

the false positives and false negatives. Typical exam- 

ples of false positives are shown in Figure 7. There 

were examples where side gutters and manholes were 

judged to be damage, and judgments that the reflection 

from windshield wipers was blur on a crosswalk. There 

were also cases where a blurred sign on the road was 

judged as damage. On the other hand, there were al- 

most no cases where shadows on the road were judged 

to be damage. We believe that as many shadows on 

the road were included as negative examples in the 

training data, it was rare to judge a shadow as damage. 

On the other hand, as the training data did not contain 

many blurred signs on the road or windshield wipers, 

http://www.ijasem.org/


        ISSN 2454-9940 

      www.ijasem.org 

    Vol 19, Issue 1, 2025 

 

 

  

1212 

 

 

 

 

(a) D20, D44 (b) D43 (c) D01 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(d) D00, D01 (e) D01, D44 (f) D00, D44 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(g) D20 (h) D43, D44 (i) D00, D44 

 
 
 
 
 
 
 
 
 
 

 

(j) D01 (k) D00 (i) Class name 

D00 : Linear crack, longitudinal, 

wheel mark part 

D01 : Linear crack, longitudinal, 

construction joint part 

D10 : Linear crack, lateral, 

equal int erval 

D11 : Linear crack, lateral, 

construction joint part 

D20 : Alligator crack 

D40 : Rutting, bump, pothole, separation 

D43 : Cross walk blur 

D44 : White line blur 

 

Fig. 5. Detected samples using the SSD MobileNet. 
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(a) D44 (b) D01 (c) D01, D44 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(d) D00, D44 (e) D00 (f) D00, D44 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(g)D43 (h) D43 (i) D20 

 
 
 
 
 
 
 
 
 

 

(j) D20 (k) D00 ,D44 (i) Class name 

D00 : Linear crack, longitudinal, 

wheel mark part 

D01 : Linear crack, longitudinal, 

construction joint part 
D10 : Linear crack, lateral, 

equal interval 

D11 : Linear crack, lateral, 

construction joint part 

D20 : Alligator crack 

D40 : Rutting, bump, pothole, separation 

D43 : Cross walk blur 

D44 : White line blur 

 
Fig. 6. Detected samples using the SSD Inception V2. 
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Fig. 7. Examples of false positives. Misjudgments of (a) a side groove as D01, (b) a wet road as D20, (c) a manhole as D20, (d) a 

car wheel as D44, (e) a streaked road sign as D20, and (f) a reflected wiper as D43. 

 

Table 3 

Inference speed (m/s) for each model for image resolution of 

a 300 × 300 pixel image 
 

Model details Inference speed (m/s) 

SSD using Inception V2 (GPU) 63.1 

SSD using MobileNet (GPU) 30.6 

SSD using MobileNet (smartphone) 1,500 

 

 

it is thought that this is why these misjudgments were 

made. 

Moreover, typical false negative examples are shown 

in Figure 8. When some object was reflected on the 

windshield, damage was not detected correctly. Further- 

more, when the blur of a pedestrian crossing was re- 

flected horizontally, or when only a part of it was shown, 

it was not detected. Moreover, some potholes were not 

detected. This seems to be because there were few im- 

ages where the damage was partially reflected in the 

training data. 

Next, the inference speed of each model is described 

in Table 3. The speed was tested on a PC with the 

same specifications as in the previous case and a 

Nexus 5X smartphone with an MSM8992 CPU and 

2 RAM GB memory. In this case, the SSD Inception 

V2 was two times slower than the SSD MobileNet, 

which is consistent with the result of Huang et al. 

(2017). In addition, because the smartphone processes 

data in 1.5 seconds, when it is installed in a moving 

car, damage to the road surface can be detected in 

real time and with the same accuracy as in Table 2. 

Our smartphone application, which we used to detect 

road damage using the trained model with our data set 

(SSD with MobileNet; Figure 9) is publicly available 

on our Web site. Please note that the damage detection 

and classification process is running on the smartphone. 

 

 

6 DISCUSSION 

 

To detect road damage accurately, it is important to ob- 

tain three-dimensional (3D) depth images. However, to 

acquire such images, a dedicated vehicle must be used. 

As such, it is not possible to inexpensively and exhaus- 

tively inspect all roads. Under such circumstances, we 

think that it is worthwhile to consider methods that can 

comprehensively survey road surfaces at low costs, such 

as methods that rely on smartphones. For example, it is 

possible to acquire data by attaching a smartphone to a 

parcel-delivery service, postal service, or public vehicle. 

Although the accuracy of the model obtained in this re- 

search is not high when compared to the proposals that 

use highly accurate sensors, the proposed model is nev- 

ertheless effective for a preliminary and exhaustive in- 

spection of all roads in a district before more expensive 

(a) (b) (c) 

(d) (e) (f) 
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D20 

STARTDETECTION STOPDETECTION 

 

 

 

 

Fig. 8. Examples of false negatives. Images from (a) to (b) have the damages, respectively. 

(a) D00, (b) D44, (c) D43, (d) D43, (e) D10, and (f) D40 cannot be detected. 

 

 

Fig. 9. Operating screen of our smartphone application. It is designed to be mounted on the dashboard of a general passenger car 

(see Figure 1). Detection of road surface damage is initiated by pressing the “START DETECTION” button. An image of the 

damaged part and the position information are transmitted to the external server only when damage is found. Using the SSD with 

MobileNet, this application can detect eight types of road damages within 1.5 seconds with the same accuracy as shown in Table 2. 

methods are implemented. In other words, those roads 

that will require 3D depth images can be identified 

through preliminary inspections with a smartphone. 

Considering that images on a smartphone can be pro- 

cessed every 1.5 seconds and that the road 10 m ahead 

is reflected by the in-vehicle smartphone, when vehi- 

cles travel at less than 6.6 m/s (23 km/h), we can com- 

pletely inspect the road surface without any missing in- 

formation. Even when traveling at faster speeds, public 

vehicles that travel regularly along the same route can 

(a) (b) (c) 

(d) (e) (f) 
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perform comprehensive inspections over time. In fact, 

by installing a GPS to measure the routes of public ve- 

hicles over the course of a year, it was shown that public 

vehicles travel along over 80% of the roads in a mu- 

nicipality (Obara et al., 2017). Therefore, it is possible 

to survey roads comprehensively and at low cost by in- 

stalling smartphones on public vehicles over an ample 

period of time. 

In future research, we shall increase the amount of 

training data and devise the structure of a new neural 

network to improve the detection accuracy of cate- 

gories that cannot be detected well. In general, object 

detection by deep learning requires more than 1,000 

images for each class. By continuing our experiment 

over the long term in the future, we plan to increase 

the number of images that can be used as training data. 

We also believe that simulated training images can be 

effective, by using GAN (Generative adversarial net- 

work; Radford et al., 2015) and other such approaches. 

Further, although we here developed a benchmark by 

combining SSD, MobileNet, and Inception V2, it will 

also be helpful to devise a model that is more suitable 

for this data set. Further, a pixel-by-pixel-based method 

can be applied to detect road damages. Moreover, 

instead of solving the damage detection as a problem 

of image processing, the determination accuracy can 

be improved by combining with different kinds of data 

(e.g., vibration data). On the other hand, we believe we 

need to reconsider the definition of the damage types. 

In this article, although the definition was based on vi- 

sual inspection standards in Japan’s road management, 

some categories are too ambiguous to distinguish using 

images captured by a smartphone installed on the dash- 

board. For example, it is also important to devise other 

damage definitions, such as classifying damage types 

in descending order of risk after discovery. Finally, we 

shall determine whether a trained model can be used 

on images collected from locations other than Japan. 

 

 

7 CONCLUSIONS 

 

In this study, we developed a new large-scale data 

set for road damage detection and classification. In 

collaboration with seven local governments in Japan, 

we collected 163,664 road images. Then, these images 

with road damage were visually confirmed and classified 

into eight classes; out of these, 9,053 images were an- 

notated and released as a training data set. To the best 

of our knowledge, this data set is the first one for road 

damage detection. We strongly believe this data set pro- 

vides a new avenue for road damage detection. In ad- 

dition, we trained and evaluated the damage detection 

model using our data set. Based on the results, in the 

best-detectable category, we achieved recalls and preci- 

sions greater than 71% and 77% using MobileNet and 

Inception V2, respectively, with an inference time of 

1.5 seconds on a smartphone. We believe that a sim- 

ple road inspection method using only a smartphone 

will be useful in regions where experts and financial re- 

sources are lacking. To support research in this field, we 

have made the data set, trained models, source code, 

and smartphone application publicly available. 
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