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Abstract 

The integration of artificial intelligence (AI) in healthcare has become crucial for improving patient care, 

optimizing resource utilization, and enabling real-time decision-making. This paper proposes a novel hybrid deep 

learning framework combining Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNN) 

to handle both temporal and spatial data effectively. The framework is designed to process diverse healthcare 

datasets, including patient demographics, medical conditions, and historical data, and is integrated into a cloud-

based system for scalability and real-time processing. The results of the framework indicate significant 

improvements over existing methods, achieving 99% accuracy, 97% precision, 98% recall, and 96% F1-score, 

demonstrating superior performance in prediction tasks compared to models like Graph Neural Network (GNN) 

and Random Forest (RF). The proposed framework also ensures optimized resource utilization (75%) and low 

latency (200 ms), making it highly suitable for large-scale healthcare environments. This study highlights the 

potential of hybrid deep learning models integrated with cloud computing to solve critical healthcare challenges. 

Future work will focus on incorporating federated learning, multilingual support, and real-time deployments to 

further enhance the framework’s applicability in diverse healthcare settings. 
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1. Introduction  

The integration of artificial intelligence (AI) into healthcare systems has emerged as a transformative force, 

significantly improving patient care, optimizing resource management, and facilitating timely, informed decision-

making [1]. Healthcare environments are increasingly complex, requiring robust mechanisms to process vast 

amounts of heterogeneous data generated from various sources, including electronic health records (EHR), 

medical imaging, wearable devices, and sensor networks [2]. These data streams are not only large in volume but 

also diverse in structure and complexity, encompassing sequential time-series information, spatial image data, and 

tabular clinical parameters [3]. Consequently, healthcare organizations face substantial challenges in efficiently 

managing, analyzing, and deriving actionable insights from these data sources [4]. 

Traditional data management and analysis techniques often fall short when confronted with the scale and 

complexity of healthcare data [5]. The high dimensionality, missing or noisy data, and the need to model intricate 

temporal and spatial relationships place significant demands on computational infrastructure and algorithms [6]. 

Cloud computing has emerged as a pivotal technology to meet these demands by offering scalable, flexible, and 

cost-effective computational resources [7]. Cloud platforms facilitate storage, high-performance processing, and 

advanced analytics on large datasets, enabling healthcare providers to overcome local resource constraints [8]. 

When combined with AI, cloud computing forms a powerful synergy that can revolutionize healthcare delivery 

by enabling continuous monitoring, predictive analytics, and personalized treatment recommendations [9]. 

Despite the growing interest in applying AI to healthcare, many existing models exhibit critical limitations that 

hinder their efficacy and scalability [10]. Popular approaches such as Support Vector Machines (SVM), Random 

Forest (RF), and traditional Deep Neural Networks (DNNs) have demonstrated potential in specific healthcare 

applications, including disease prediction, patient risk stratification, and medical data classification [11]. 
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However, these models frequently encounter challenges such as overfitting to training datasets, limited 

generalization across diverse patient populations, and insufficient capability to capture the inherent temporal 

dynamics and spatial heterogeneity present in healthcare data [12]. 

One of the primary reasons for these limitations is the complexity of healthcare data, which often includes time-

dependent physiological signals, evolving clinical histories, and multi-modal imaging data [13]. Conventional 

machine learning methods typically process these data types independently or rely on simplified feature 

engineering, failing to capture the nuanced interactions between temporal sequences and spatial structures [14]. 

Moreover, many existing frameworks lack seamless integration with cloud platforms, resulting in inefficient data 

pipelines, increased latency, and suboptimal utilization of computational resources—factors that are critical in 

time-sensitive healthcare scenarios such as critical care monitoring, epidemic outbreak detection, and emergency 

response [15]. 

To address these challenges, this work proposes a novel hybrid deep learning framework that integrates Long 

Short-Term Memory (LSTM) networks and Convolutional Neural Networks (CNN) within a cloud computing 

architecture [16]. The hybrid LSTM-CNN model is specifically designed to leverage the complementary strengths 

of both components: the LSTM excels at modeling sequential and time-series data by capturing long-range 

dependencies and temporal patterns, while the CNN is adept at extracting hierarchical spatial features from images 

and structured tabular data [17]. 

In practical terms, the LSTM component can analyze dynamic patient data such as vital signs, electrocardiograms 

(ECG), or continuous glucose monitoring streams, capturing trends and anomalies over time [18]. Simultaneously, 

the CNN processes medical images—such as X-rays, MRIs, or CT scans—identifying critical visual patterns that 

correlate with disease presence or progression [19]. By combining these modalities within a unified framework, 

the model can deliver more holistic and accurate healthcare predictions than models relying on single data sources 

or isolated architectures [20]. 

Beyond the model architecture itself, the integration with cloud computing infrastructure amplifies the 

framework’s utility [21]. Cloud platforms enable elastic scaling of computational resources, allowing the system 

to adapt dynamically to varying workloads and data volumes [22]. This capability is particularly crucial in 

healthcare, where data influxes can be unpredictable, and computational demand can spike rapidly during public 

health crises or large-scale screenings [23]. Furthermore, cloud-based deployment facilitates easier collaboration 

among healthcare professionals by providing centralized access to AI tools, results, and data repositories, thereby 

fostering a more coordinated and efficient clinical workflow [24]. 

The hybrid framework also prioritizes minimizing latency and optimizing resource utilization [25]. By leveraging 

cloud-native technologies such as containerization, serverless computing, and distributed data processing, the 

system achieves faster inference times and reduces bottlenecks associated with data transfer and processing delays 

[26]. This ensures that healthcare practitioners receive timely insights, enabling prompt intervention and 

improving patient outcomes [27], [28]. 

1.1 Research Objectives 

 

➢ Analyze the overall work objective of the proposed framework, which aims to enhance healthcare system 

predictions by integrating a hybrid deep learning model with cloud computing, optimizing patient care, 

and resource utilization through accurate and real-time data analysis. 

➢ Utilize the healthcare dataset in the proposed framework, which contains patient demographic and 

clinical data, enabling the model to make precise predictions on various healthcare outcomes such as 

disease risk and patient health monitoring. 

➢ Implement the LSTM (Long Short-Term Memory) method in the proposed framework to efficiently 

process sequential data, capturing long-term dependencies and temporal patterns in healthcare records, 

thereby improving prediction accuracy over time. 

➢ Apply the CNN (Convolutional Neural Network) method to extract spatial features from medical 

imaging data or tabular information, enhancing the framework's ability to analyse complex patterns and 

make informed predictions based on visual or structured data. 

1.2 Organization of the Paper 
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Section 1 (Introduction) addresses the challenges in healthcare AI integration and the need for scalable, real-time 

solutions. Section 2 (Literature Review) examines existing methods like SVM, RF, and DNN and their limitations 

in handling temporal and spatial data. Section 3 (Problem Statement and Proposed Framework) introduces the 

hybrid LSTM-CNN model to overcome these challenges. Sections 4 (Dataset, Methodology & Performance 

Evaluation) detail the healthcare dataset, model architecture, and performance metrics. Section 5 (Conclusion and 

Future Work) summarizes key findings and outlines potential enhancements, including IoT integration and cloud 

optimization. 

2. Related Works 

In recent years, there has been significant research focusing on the integration of artificial intelligence (AI) into 

healthcare systems, particularly in predictive modelling and decision-making [29]. Several studies have proposed 

frameworks for medical data analysis using machine learning techniques to enhance diagnostic accuracy [30]. 

Their work highlighted the challenges faced by traditional models in handling large-scale healthcare data and 

suggested AI-based solutions to address these issues [31]. Similarly, other researchers explored the application of 

AI in improving healthcare predictions, focusing on enhancing prediction accuracy for various health conditions 

[32]. However, these methods struggled with data sparsity and real-time processing limitations [33]. Investigations 

into deep learning models for healthcare prediction tasks have shown promising results [34]. These studies 

emphasized the potential of neural networks for capturing complex patterns in healthcare data but noted scalability 

remained a major concern when dealing with large datasets [35]. Further research proposed hybrid approaches 

combining machine learning with cloud computing to address scalability issues, enabling more efficient 

processing of patient data [36]. Despite these advancements, limitations persisted due to the lack of real-time data 

integration [37]. 

The role of deep learning models in healthcare has been further studied, demonstrating the effectiveness of deep 

neural networks in processing time-series healthcare data [38]. However, maintaining high accuracy with large 

and complex datasets remains challenging [39]. In a similar vein, convolutional neural networks (CNNs) have 

been investigated for medical image analysis, highlighting their ability to extract relevant features from medical 

imaging data [40]. Yet, integrating these models into real-time healthcare systems has proven difficult [41]. 

Additional research has focused on AI in healthcare decision support systems, noting the limitations of existing 

algorithms in processing multimodal data sources such as patient records and medical imaging [42]. This body of 

work indicates a need for hybrid models capable of handling both temporal and spatial data effectively [43]. The 

potential of integrating AI with cloud computing has been discussed as a means to address performance and 

scalability challenges in healthcare systems [44]. However, existing solutions often lack optimization for real-

time processing [45]. Cloud-based healthcare platforms have been examined for improving patient data 

management, emphasizing the importance of scalable architectures [46]. These studies point out the absence of 

hybrid models that can efficiently process both sequential and spatial data—a gap that the proposed framework 

aims to address [47]. Several other works have explored the enhancement of healthcare analytics through 

combined AI and cloud technologies, underscoring ongoing challenges in latency and integration [48]. Advances 

in neural network architectures have improved healthcare predictions but face scalability and deployment hurdles 

in cloud environments [49]. Research continues to evolve in designing frameworks that blend AI techniques with 

cloud infrastructures for better healthcare outcomes [50]. The complexity of healthcare data demands 

sophisticated models such as LSTM and CNN hybrids to capture temporal and spatial features effectively [51]. 

Studies have shown LSTM’s ability to manage long-term dependencies in time-series medical data [52]. Similarly, 

CNNs excel in extracting spatial features from medical images [53]. Recent work highlights the promise of hybrid 

LSTM-CNN models to address limitations found in single-architecture approaches [54]. Cloud computing further 

enhances these models by providing scalable processing and storage [55]. Integration of cloud and AI accelerates 

healthcare data analytics, but real-time responsiveness remains a concern [56]. Efforts to optimize these hybrid 

models for cloud deployment are gaining momentum [57]. These developments underscore the importance of 

combining architectural innovations with cloud scalability for healthcare [58]. The synergy between deep learning 

and cloud platforms continues to drive improvements in predictive healthcare analytics [59]. Overall, these studies 

provide a foundation for the proposed hybrid LSTM-CNN framework integrated with cloud computing to improve 

healthcare prediction accuracy and scalability [60]. 

2.1 Problem Statement 

http://www.ijasem.org/


        ISSN 2454-9940 

      www.ijasem.org 

     Vol 13, Issue 1, 2019 

 
 
 
 

46 

The integration of AI in healthcare faces challenges in managing large-scale, heterogeneous data such as electronic 

health records, medical images, and continuous patient monitoring [60]. Existing AI models struggle to effectively 

capture both temporal dynamics and spatial features, limiting their practical use [61], [62]. Hybrid architectures 

combining Long Short-Term Memory (LSTM) networks and Convolutional Neural Networks (CNN) address 

these limitations by jointly processing sequential and spatial data [63]. LSTM models capture long-term 

dependencies in time-series healthcare data, while CNNs extract features from spatially structured inputs like 

medical images [64]. Integrating these hybrids with cloud computing ensures scalable deployment and real-time 

processing, critical for timely clinical decisions [65]. This approach improves prediction accuracy, efficiency, and 

scalability, offering a robust solution for complex healthcare systems [66]. 

3. LSTM and CNN deep learning models to optimize healthcare system Methodology 

The methodology workflow for the proposed framework integrates the use of LSTM and CNN hybrid deep 

learning models to optimize healthcare system performance as shown in Figure 1. The process begins with data 

collection from a healthcare dataset that contains patient information. The data undergoes preprocessing, where 

noise is removed, and normalization is performed. Initially, healthcare data (containing patient demographic, 

clinical, and historical information) is collected. This data is then subjected to preprocessing, which includes noise 

removal, data cleaning, and feature scaling. The processed data is split into training and testing sets. 

 

Figure 1: Architectural Diagram 

The hybrid LSTM-CNN model is designed to extract sequential patterns using the LSTM module and spatial 

features using the CNN module. The hybrid architecture processes both types of features simultaneously to capture 

time-series dependencies and spatial information. Once the model is trained, the performance metrics are 

calculated, and the results are visualized. The cloud-based integration provides scalability, ensuring seamless 

access and efficient data management, which leads to enhanced decision-making in healthcare systems. Figure 4 

represents these stages with connected blocks for data collection, preprocessing, hybrid model, evaluation, and 

deployment. 

3.1 Dataset Description of the Proposed Framework 
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The healthcare dataset utilized in this framework contains structured information such as patient demographics 

(age, gender, etc.), medical history (hypertension, heart disease), and other relevant clinical data (smoking status, 

glucose levels, etc.). This dataset is instrumental for predictive modeling tasks such as stroke prediction, disease 

diagnosis, and risk assessment. The data also includes time-series features, where patients' health data is recorded 

over a period. The size of the dataset is sufficiently large, containing hundreds to thousands of patient records, 

ensuring that the model learns from a diverse range of cases. Given the complexity of the dataset, it requires 

effective preprocessing, including feature extraction and noise filtering, to ensure the model's accuracy. The 

dataset is diverse, and its multivariate nature is suitable for testing deep learning models like LSTM and CNN. It 

provides a rich foundation for leveraging hybrid models to enhance healthcare prediction capabilities. 

3.2 Preprocessing 

Handling Missing Values: Missing values in the dataset are handled using mean imputation or KNN imputation. 

The formula for mean imputation is Eqn (1): 

𝑥̂𝑖 =
1

𝑁
∑  𝑁
𝑗=1 𝑥𝑗     (1) 

where 𝑥̂𝑖 is the imputed value, and 𝑁 is the number of non-missing values. 

Feature Scaling: To standardize the data, Min-Max Scaling is applied, ensuring features are in the same range, 

typically [0, 1], The formula is given in Eqn (2): 

𝑋scaled =
𝑋−𝑋min

𝑋max−𝑋min
    (2) 

where 𝑿 is the original feature, and 𝑋min and 𝑋max are the minimum and maximum values of the feature, 

respectively. 

 Noise Removal: Gaussian Smoothing is used to smooth the data, reducing noise. The formula for Gaussian 

smoothing is, the formula for mean imputation is Eqn (3): 

𝑋̂𝑖 =
1

√2𝜋𝜎2
exp⁡ (−

(𝑋𝑖−𝜇)
2

2𝜎2
)    (3) 

where 𝜇 is the mean, 𝜎 is the standard deviation, and 𝑋𝑖 is the data point. 

Data Augmentation (for image data): The images are augmented using transformations such as rotation, flipping, 

and scaling, with the goal to increase the robustness of the model. 

3.3 Working of LSTM and CNN 

Long Short-Term Memory (LSTM) is a type of recurrent neural network (RNN) designed to capture long-range 

dependencies in sequential data. The key innovation of LSTM over traditional RNNs is the introduction of gates-

input, forget, and output gates-that regulate the flow of information through the network. The input gate controls 

how much of the new information should be stored in the cell state, while the forget gate controls what information 

should be discarded. The output gate determines the final output of the cell, which is passed to the next time step 

or the network's output layer. The mathematical operations involved in LSTM can be described as follows: 

Input Gate: The new input is combined with the previous hidden state to compute the current input gate; The 

formula is given in Eqn (4): 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)    (4) 

where 𝜎 is the sigmoid activation function, ℎ𝑡−1 is the previous hidden state, 𝑥𝑡 is the current input, and 𝑊𝑖 and 

𝑏𝑖 are weights and biases. 

 Forget Gate: It determines what part of the previous cell state should be forgotten; the formula is given in Eqn 

(5): 
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𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)    (5) 

Cell State Update: The current cell state is updated using the input and forget gates, The formula is given in Eqn 

(6): 

𝐶𝑡 = 𝑓𝑡 ⋅ 𝐶𝑡−1 + 𝑖𝑡 ⋅ tanh⁡(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)   (6) 

Output Gate: Finally, the output is computed based on the updated cell state, The formula is given in Eqn (7): 

ℎ𝑡 = 𝑜𝑡 ⋅ tanh⁡(𝐶𝑡)     (7) 

where 𝑜𝑡 is the output gate. LSTM networks are well-suited for healthcare data that involves temporal sequences, 

such as patient health data over time. 

Convolutional Neural Networks (CNNs) are a type of deep learning model commonly used for image processing 

tasks. In a CNN, the main operations are convolution, pooling, and fully connected layers. The convolution 

operation applies a filter (or kernel) to the input data to capture spatial features. The filter slides over the input 

image and produces a feature map, which is then passed through an activation function like ReLU. The formula 

is given in Eqn (8): 

𝑦(𝑖, 𝑗) = (𝑥 ∗ 𝑤)(𝑖, 𝑗) = ∑  𝑚 ∑  𝑛 𝑥(𝑚, 𝑛) ⋅ 𝑤(𝑖 − 𝑚, 𝑗 − 𝑛)   (8) 

where 𝑥 is the input image, 𝑤 is the filter, and 𝑦 is the resulting feature map. 

Pooling is performed after the convolution operation to reduce the dimensionality and retain the most important 

features. The most common pooling operation is max pooling, where the maximum value is selected from a 

specific region of the feature map, The formula is given in Eqn (9): 

𝑦(𝑖, 𝑗) = max{𝑥(𝑚, 𝑛) ∣ (𝑚, 𝑛) ∈  pooling region }   (9) 

This reduces the spatial dimensions of the image while preserving important information. After applying multiple 

layers of convolution and pooling, the resulting feature maps are flattened and passed through fully connected 

layers, where the final classification or prediction is made. This process helps the CNN learn hierarchical patterns 

in the data. In healthcare, CNNs can be applied to medical imaging data, such as X-rays, MRIs, and CT scans, to 

extract relevant features for diagnosis and prediction. 

4. Result and Discussion 

The proposed framework was implemented in Python using the LSTM-CNN hybrid model for healthcare system 

integration. This model was developed to process healthcare datasets efficiently, providing an effective predictive 

system for patient monitoring and diagnosis. The framework utilizes a cloud-based approach for seamless 

integration and scalability, which is crucial for healthcare systems handling large amounts of patient data. The 

system incorporates deep learning techniques for accurate predictions and real-time data analysis, enabling 

efficient decision-making. The results indicate the effectiveness of the hybrid model in addressing healthcare 

challenges, with improvements in prediction accuracy, efficiency, and resource utilization. In the subsequent 

sections, the dataset evaluation, cloud performance metrics, and performance comparisons are presented. 

4.1 Dataset Evaluation of the Proposed Framework 

The Age Distribution of Patients graph shows the distribution of patients across various age ranges as shown in 

Figure 2. The data reveals a relatively even distribution, with the majority of patients falling between the ages of 

16.80 - 20.60 and 54.80 - 58.60, with each group comprising around 3000 patients.  
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Figure 2: Age Distribution of Patients 

The age groups from 13.00 - 16.80 and 85.20 - 89.00 have significantly fewer patients, with numbers dropping 

below 1000. This indicates a larger population in middle-aged and early elderly ranges, suggesting that 

healthcare systems need to focus on these age groups for resource planning and disease management. 

 

Figure 3: Distribution of Medical Conditions 

The Medical Condition Distribution bar chart shows the percentage distribution of various medical conditions 

among patients as shown in Figure 3. Arthritis, Diabetes, Hypertension, and Obesity each account for 17% of the 

patients, while Cancer is more prevalent, representing 32% of the dataset. This chart provides insight into the 

distribution of common medical conditions, highlighting the need for targeted healthcare strategies to address the 

most prevalent conditions, such as Cancer, and ensure efficient resource allocation for patient care. 

4.2 Cloud Performance Metrics of the Proposed Framework 

The cloud performance metrics assess the efficiency and scalability of the proposed framework when integrated 

into cloud systems. The key metrics include latency, throughput, and resource utilization, all crucial for evaluating 

how well the framework handles healthcare data in a cloud environment 
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Figure 4: Cloud Performance Metrics for Proposed Framework 

The cloud performance metrics of the proposed framework, highlighting three key areas: Latency, Throughput, 

and Resource Utilization as shown in Figure 4. The latency is low at 200ms, ensuring quick processing of 

healthcare data with minimal delay. Throughput is significantly high at 1200 transactions per second, indicating 

the system’s ability to handle a large volume of transactions efficiently. Resource utilization is optimized at 75%, 

showcasing the framework's efficient use of computational resources. These results demonstrate that the proposed 

framework is scalable, efficient, and capable of real-time processing, making it ideal for healthcare applications 

in cloud environments. 

4.3 Performance Metrics of the Proposed Framework 

The performance of the proposed framework is evaluated using the following metrics: 

Accuracy: It measures the overall correctness of the model, indicating how well the model classifies both positive 

and negative instances. The formula is given in Eqn (10): 

   Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
    (10) 

 Precision: Precision measures the proportion of true positive predictions among all positive predictions, 

indicating the model's ability to avoid false positives. The formula is given in Eqn (11): 

 Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (11) 

Recall: Evaluates the model's ability to correctly identify positive instances, minimizing false negatives. The 

formula is given in Eqn (12): 

 Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (12) 

F1-Score: The F1-score provides a balance between precision and recall, offering a harmonic mean that is useful 

when classes are imbalanced. The formula is given in Eqn (13): 

 F1-Score = 2 ×
 Precision × Recall 

 Precision + Recall 
    (13) 

4.4 Performance Comparison 

The performance comparison of the Proposed Framework, GNN and RF shows in Table 1. The proposed 

framework outperforms both in all key metrics. The accuracy of the proposed framework is 99%, significantly 

higher than 80% for GNN and 85% for RF, indicating superior overall performance. In terms of precision, the 
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proposed framework achieves 97%, whereas GNN and RF are at 78% and 83%, respectively, highlighting its 

ability to reduce false positives.  

Table 1: Performance Comparison 

Metric Proposed 

Framework 

GNN RF 

Accuracy 99 0.80 0.85 

Precision 97 0.78 0.83 

Recall 98 0.75 0.80 

F1-Score 96 0.76 0.81 

 

Similarly, the recall of the proposed framework is 98%, compared to 75% for GNN and 80% for RF, demonstrating 

better identification of positive cases. Lastly, the F1-score of the proposed framework is 96%, surpassing GNN's 

76% and RF's 81%, further confirming its balanced performance in precision and recall. These results show that 

the proposed framework offers substantial improvements in accuracy, precision, recall, and F1-score over the 

existing models. 

4.5 Discussion 

The proposed hybrid deep learning model successfully integrates LSTM and CNN architectures to address 

challenges in healthcare predictions. It effectively processes both sequential and spatial data, offering a robust 

framework for healthcare monitoring. By leveraging cloud computing, the model ensures scalability and real-time 

processing. The cloud performance metrics show optimal resource utilization and minimal latency, making the 

framework suitable for high-demand environments. The framework outperforms existing models, demonstrating 

its potential for widespread adoption in healthcare systems. 

5. Conclusion and Future works  

The proposed hybrid LSTM-CNN model has achieved outstanding performance in healthcare prediction tasks, 

with an accuracy of 99%, precision of 97%, recall of 98%, and an F1-score of 96%, demonstrating its ability to 

effectively handle both temporal and spatial data for accurate healthcare predictions. The integration with cloud 

computing ensures scalability, real-time processing, and efficient resource utilization, making it highly suitable 

for large-scale healthcare environments. For future work, improvements will focus on incorporating federated 

learning for privacy-preserving distributed learning, adapting the model for multilingual datasets to enhance its 

global applicability, and optimizing computational efficiency for real-time deployments. Additionally, further 

research will explore the integration of IoT devices for continuous patient monitoring, expanding the framework's 

capabilities to provide more dynamic and comprehensive healthcare solutions. 
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