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ABSTRACT: Precision medicine, also known as 

personalized medicine, represents a transformative 

approach in healthcare by offering customized 

treatment strategies based on individual patient 

profiles. Unlike conventional methodologies, it 

leverages personal data such as genetic makeup, 

environment, and lifestyle factors to optimize 

treatment outcomes. With the increasing availability of  

 

big data and advancements in artificial intelligence 

(AI), it is now possible to process and analyze vast 

volumes of complex patient data. This project 

investigates how AI and big data technologies, 

particularly Hadoop and machine learning algorithms 

like Logistic Regression and XGBoost, contribute to 

improving diagnostic precision and personalized 

healthcare—especially in the context of neurological 
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diseases like Alzheimers. Despite the promise, 

challenges in data quality, privacy, and infrastructure 

must be addressed to realize the full potential of 

precision medicine. The system developed here 

emphasizes model transparency and clinical utility 

through tools like SHAP (SHapley Additive 

exPlanations), aiming to support decision-making in 

real-world medical settings.  

1. INTRODUCTION  

Alzheimer’s Disease (AD) is a chronic 

neurodegenerative condition that affects millions 

worldwide, leading to a progressive decline in 

memory, cognitive function, and the ability to perform 

everyday tasks. It is currently incurable, and most 

interventions focus on symptom management rather 

than disease reversal. As the global population 

continues to age, the number of individuals affected by 

AD is projected to increase significantly, placing 

immense pressure on healthcare systems, caregivers, 

and society at large. 

A major limitation in current diagnostic and treatment 

strategies for Alzheimer’s is the reliance on a 

generalized approach. Conventional medicine 

typically applies the same treatment plans to broad 

patient groups, regardless of individual variability in 

genetic, clinical, or lifestyle factors. This “one-size-

fits-all” model often results in delayed diagnosis, 

missed early intervention opportunities, and 

inconsistent treatment effectiveness across patient 

populations. 

To overcome these limitations, the field of precision 

medicine also known as personalized medicine has 

emerged. Precision medicine aims to tailor medical 

care to the individual characteristics of each patient. 

By integrating data from various sources such as 

medical history, laboratory results, and other clinical 

features, healthcare professionals can make better-

informed decisions that are customized to the unique 

profile of each patient. 

The recent rise of artificial intelligence (AI) and 

machine learning (ML) has revolutionized precision 

medicine by enabling the analysis of large and 

complex datasets. AI techniques can extract 

meaningful patterns and insights from data that would 

otherwise be difficult to interpret manually. These 

insights support earlier detection, more accurate 

diagnosis, and personalized treatment 

recommendations, particularly in diseases like 

Alzheimer’s where early intervention is crucial. 

In this project, we focus on building a machine 

learning-based diagnostic system that predicts the 

presence of Alzheimer’s Disease using structured 

clinical data. The system is designed using two 

primary classification models: Logistic Regression and 

XGBoost (Extreme Gradient Boosting). Logistic 

Regression is a widely used linear model known for its 

simplicity, interpretability, and effectiveness in binary 

classification tasks. XGBoost, on the other hand, is an 

advanced ensemble learning method that leverages 

gradient boosting techniques to deliver superior 

predictive performance, especially on structured data. 

To ensure the model is not just accurate but also 

interpretable an essential requirement in healthcare we 

employ SHAP (SHapley Additive exPlanations). 

SHAP values quantify the impact of each input feature 

on the model’s predictions, providing clinicians with a 

transparent understanding of why a particular 

diagnosis was suggested. This aspect of explainable AI 
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is critical for fostering trust and facilitating clinical 

decision-making. 

The system is developed using Python and common 

data science libraries, including pandas, NumPy, 

scikit-learn, XGBoost, and SHAP. It includes data 

preprocessing, feature selection, model training and 

evaluation, and result visualization through tools such 

as confusion matrices, classification reports, and ROC 

curves. 

By combining traditional and advanced machine 

learning techniques with a strong emphasis on 

interpretability, this work contributes to the 

advancement of precision medicine in the context of 

Alzheimer’s Disease. It demonstrates how structured 

clinical data, when paired with robust AI tools, can 

support early and more personalized diagnosis 

ultimately leading to better patient outcomes and more 

informed healthcare strategies. 

2. LITERATURE REVIEW  

[1] Gupta, N. S., & Kumar, P. (2023). Perspective 

of Artificial Intelligence in Healthcare Data 

Management: A Journey Towards Precision Medicine. 

This study emphasizes the integration of artificial 

intelligence (AI) into healthcare data management to 

advance precision medicine. It highlights how AI 

techniques—including supervised learning models 

like Logistic Regression and Gradient Boosting are 

applied to clinical, genomic, and behavioural datasets 

to personalize treatment pathways. The paper presents 

neurology as a key area where AI has the potential to 

significantly enhance early diagnosis and 

individualized care, especially for diseases like 

Alzheimer's. Major challenges discussed include data 

standardization, interoperability, and the ethical 

implications of using AI for medical decisions. The 

paper concludes by recommending the development of 

explainable AI tools such as SHAP to increase clinical 

trust and adoption. These principles guide our current 

investigation into using interpretable models such as 

Logistic Regression and XGBoost for Alzheimer's 

detection.. 

[2] Cirillo, D., & Valencia, A. (2019). Big Data 

Analytics for Personalized Medicine. 

This work discusses the role of big data and AI in 

transforming healthcare delivery by integrating multi-

omics data—genomics, proteomics, transcriptomics—

with clinical records to enable personalized medical 

decisions. Classical machine learning algorithms such 

as Random Forest, SVM, and Logistic Regression are 

evaluated for their performance in handling high-

dimensional patient datasets. The study finds that 

Gradient Boosting methods (like XGBoost) 

demonstrate high accuracy in predicting disease risk 

and patient outcomes when combined with robust 

preprocessing and feature engineering techniques. The 

authors highlight the importance of model 

transparency and discuss methods for visualizing 

feature contributions to improve clinical 

interpretability. Their findings align with our project’s 

focus on applying interpretable models like Logistic 

Regression and SHAP-enhanced XGBoost to clinical 

features for Alzheimer’s prediction. 

[3] Ravitz, A. D., et al. (2021). Big Data, 

Artificial Intelligence, and the Promise of Precision 

Medicine. 

This paper details the development of the Precision 

Medicine Analytics Platform (PMAP) at Johns 

Hopkins, an integrated system designed to consolidate 

patient data EHRs, imaging, genomics into a secure 

analytical environment. The study discusses the 
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application of AI models, particularly ensemble 

methods such as Gradient Boosting and XGBoost, to 

derive diagnostic insights from large-scale clinical 

datasets. The paper emphasizes the platform’s 

scalability, modularity, and its use of real-world 

datasets to validate model robustness and 

generalization. Interpretability is addressed using post-

hoc explanation techniques such as feature importance 

ranking and partial dependence plots. Our work draws 

inspiration from this approach by applying scalable, 

interpretable ML techniques (Logistic Regression and 

XGBoost) to structured clinical datasets focused on 

neurodegenerative diseases.  

3. METHODOLOGY  

 i).  Proposed System:  

The proposed system is a machine learning-based 

framework designed to predict the presence of 

Alzheimer’s Disease (AD) using structured clinical 

data. It emphasizes interpretability, efficiency, and 

diagnostic accuracy by combining classical machine 

learning models Logistic Regression and XGBoost 

with robust feature preprocessing and explainable AI 

techniques. The system avoids the complexity of deep 

learning models and image data by focusing on tabular 

clinical variables, including demographic details, 

medical history, cognitive test scores, and behavioural 

attributes. 

Each patient record is transformed into a structured 

feature vector composed of numerical, categorical, and 

ordinal attributes. The system is trained using a well-

annotated dataset of over 2,000 patient records, with 

binary diagnostic labels (0 = No Alzheimer’s, 1 = 

Alzheimer’s). After preprocessing and feature 

selection, models are evaluated using standard 

classification metrics. To promote transparency in 

medical decision-making, the XGBoost model is 

further enhanced using SHAP (SHapley Additive 

exPlanations) to provide per-prediction feature 

contributions, making it suitable for deployment in 

real-world clinical settings. 

Advantages of the Proposed System 

• Accurate and interpretable predictions using 

established ML algorithms suitable for medical 

use. 

• No dependency on imaging or unstructured data, 

simplifying deployment in non-specialist settings. 

• SHAP-based explanation of model predictions 

enhances trust and understanding among 

clinicians. 

• Efficient training and inference times, enabling 

real-time application in hospital or research 

environments. 

• Modular framework allowing for future 

integration of additional patient features or disease 

types.  

ii).  System Architecture:  

The system architecture is designed as a modular 

pipeline optimized for clinical data-based Alzheimer’s 

prediction. It begins with a data ingestion module that 

imports and cleans the raw dataset, followed by a 

preprocessing module that handles missing values, 

categorical encoding, and feature scaling. Cleaned data 

is then passed to the model training module, where both 

Logistic Regression and XGBoost classifiers are 

trained and validated using an 80-20 train-test split. 

After model evaluation using metrics like accuracy, 

confusion matrix, ROC-AUC, and F1-score, the 

XGBoost model is subjected to SHAP analysis, which 
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reveals the most influential features affecting 

prediction. 

  

  

  

Fig.1: System architecture  

iii).  Dataset collection:  

The dataset utilized in this study comprises 2,149 

anonymized patient records, each containing 

structured clinical data relevant to the diagnosis of 

Alzheimer’s Disease (AD). It is a tabular dataset 

curated from publicly accessible health repositories 

and Alzheimer’s research studies, providing a realistic 

distribution of individuals both with and without AD. 

Each patient record includes a diverse range of 

attributes spanning demographic, medical, cognitive, 

lifestyle, and behavioural dimensions. Demographic 

variables such as age, gender, and years of formal 

education are included to capture population-level risk 

factors, while medical history features such as blood 

pressure, cholesterol levels, diabetes status, and family 

history of neurodegenerative conditions offer insight 

into physiological contributors to disease progression. 

The dataset also includes key cognitive assessment 

scores like the Mini-Mental State Examination 

(MMSE), Clinical Dementia Rating (CDR), and 

additional memory and problem-solving scores, which 

serve as direct clinical indicators of cognitive 

impairment. Lifestyle and behavioural factors such as 

smoking status, alcohol consumption, sleep patterns, 

and physical activity levels are incorporated to study 

the effect of modifiable habits on disease onset and 

progression. The target label for classification is a 

binary variable labelled Diagnosis, where a value of 1 

indicates a confirmed Alzheimer’s diagnosis and 0 

indicates the absence of the disease.  

. iv). Data Processing:  

The Alzheimer’s disease dataset was first loaded and 

cleaned by removing confidential columns such as the 

doctor’s identifier to protect privacy. Features were 

selected by excluding the diagnosis label and patient ID 

columns to ensure only relevant clinical and 

demographic variables were included. The target 

variable, diagnosis, was isolated as a binary label 

indicating the presence or absence of Alzheimer’s 

disease. Subsequently, the dataset was split into 

training and testing subsets using an 80-20 ratio while 

maintaining the class distribution via stratified 

sampling. This ensured balanced representation of both 

classes in train and test sets. No additional imputation 

or normalization was explicitly performed, assuming 

the dataset was free from missing values and ready for 

model training. 

http://www.ijasem.org/
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v).  Feature Extraction:  

The dataset’s clinical and demographic features were 

used directly as input variables after excluding non-

informative identifiers. No explicit feature engineering 

such as creation of interaction terms or polynomial 

features was applied. The categorical variables were 

implicitly handled by the modelling algorithms that 

support them, while numerical features were used as-

is. The target variable was binary, representing 

Alzheimer’s diagnosis. Feature importance and 

interpretability were later explored using SHAP 

(SHapley Additive exPlanations) values on the trained 

XGBoost model, which helped quantify the 

contribution of individual features to model predictions 

and provided insights into the most influential clinical 

factors. 

vi).  Algorithms:  

Logistic Regression: Logistic Regression is a widely 

used linear classification algorithm that models the log-

odds of the binary target (Alzheimer’s diagnosis) as a 

linear combination of input features. It is appreciated 

for its simplicity, interpretability, and speed, especially 

in healthcare settings where transparency is crucial. By 

estimating coefficients for each feature, logistic 

regression provides direct insight into how each 

clinical or demographic variable influences the 

probability of Alzheimer’s presence. The model 

outputs calibrated probability scores, which are 

valuable for clinical risk assessment and decision-

making. Although logistic regression assumes a linear 

relationship between the features and the log-odds of 

the outcome, limiting its ability to capture complex 

nonlinear patterns, it often serves as a reliable baseline 

and diagnostic tool for understanding feature effects in 

biomedical data. 

XGBoost (Extreme Gradient Boosting): XGBoost is a 

state-of-the-art gradient boosting framework designed 

for speed, scalability, and high accuracy on tabular 

datasets like clinical patient records. It constructs an 

ensemble of decision trees sequentially, where each 

subsequent tree aims to correct the residual errors of 

the previous ensemble, optimizing a specified loss 

function via gradient descent. Key strengths of 

XGBoost include its ability to model nonlinear 

interactions between features, robustness to 

multicollinearity, and built-in regularization techniques 

(L1 and L2) that prevent overfitting and improve 

generalization. Moreover, XGBoost efficiently handles 

missing data and supports parallel and distributed 

computing, enabling faster training on large datasets. 

Importantly, XGBoost models can be interpreted using 

SHAP values, which quantify each feature’s 

contribution to individual predictions, making it 

possible to extract clinically meaningful insights and 

improve trust in the model’s diagnostic 

recommendations. 

  

4. EXPERIMENTAL RESULTS  
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Fig 2 Performance evaluation  

This table presents a comprehensive comparison of 

performance metrics Accuracy, Precision, Recall, F1 

Score.Among the two, the XGBoost classifier 

outperforms Logistic Regression across all key metrics. 

It achieves the highest accuracy and recall, indicating 

its superior ability to identify Alzheimer’s patients 

correctly without missing positive cases. Logistic 

Regression, while slightly lower in overall 

performance, still delivers reliable and interpretable 

predictions.  

  

  

Fig 3 ROC-AUC Curve Comparision 

The ROC-AUC curve illustrates the trade-off 

between the true positive rate (sensitivity) and the 

false positive rate for different threshold settings 

of the classifiers. In this study, both Logistic 

Regression and XGBoost models were evaluated 

using ROC-AUC as a performance metric to 

assess their ability to distinguish between 

Alzheimer's and non-Alzheimer's cases. The ROC 

curve for each model is plotted, with the diagonal 

dashed line representing random guessing. The 

XGBoost classifier demonstrates a higher area 

under the curve (AUC), indicating superior 

discriminative ability compared to Logistic 

Regression. The closer the curve follows the left-

hand border and then the top border of the ROC 

space, the more accurate the model. Thus, the 

ROC-AUC curve serves as an effective visual and 

quantitative tool to compare model performance 

beyond accuracy, especially in the context of 

imbalanced datasets. 

  

  

Fig 4 Model Explainability using SHAP values 

To interpret the decision-making process of the 

XGBoost model, SHAP (SHapley Additive 

exPlanations) values were employed to quantify the 

contribution of each feature towards the model’s 

output. The SHAP beeswarm plot provides a 

comprehensive view of feature influence and 

distribution across all predictions, highlighting which 

features push the prediction toward Alzheimer’s or 

non-Alzheimer’s classification. Features are ranked 

based on their impact, with each point representing an 

individual prediction, colored by feature value. This 

visualization reveals both the direction and magnitude 

of influence for each feature. Additionally, the mean 

absolute SHAP value was computed for all features 

and displayed as a heatmap to summarize overall 

importance. This global interpretation helps identify 
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the most influential clinical or demographic indicators 

driving the XGBoost model’s decisions, promoting 

transparency and supporting trust in AI-assisted 

medical diagnostics. 

5. CONCLUSION  

This study presents a hybrid machine learning 

framework for early Alzheimer's Disease (AD) 

detection using structured clinical and demographic 

data. Among the evaluated models, XGBoost 

demonstrated superior performance, achieving an 

accuracy of 94%, significantly outperforming other 

models in all key metrics including precision, recall, 

and F1-score. Logistic Regression, while simpler and 

more interpretable, attained an accuracy of 81%, 

offering a reliable baseline with well-calibrated 

probability outputs and high transparency through 

coefficient interpretation. The ROC curve clearly 

highlighted XGBoost's stronger discriminative 

capability, while SHAP explainability techniques 

provided critical insights into feature contributions, 

both at the global level and for individual patient 

predictions. The SHAP beeswarm plot and feature 

importance heatmap identified key drivers of AD 

classification, enhancing clinical interpretability. This 

approach offers a scalable, efficient, and explainable 

model well-suited for integration into clinical decision 

support systems and reinforces the value of combining 

performance with interpretability in precision medicine 

for neurodegenerative disorders.    

6. FUTURE SCOPE  

Future enhancements will focus on strengthening the 

diagnostic accuracy, interpretability, and real-world 

deployment of the system without relying on image-

based data such as MRI. One promising direction is the 

incorporation of longitudinal data from patient histories 

to model disease progression over time using temporal 

feature engineering or sequence-based approaches. 

Additionally, expanding the clinical feature set by 

integrating lab test results, medication records, lifestyle 

factors, and cognitive assessment scores can further 

enrich the predictive capabilities of the model. To 

improve explainability, the integration of SHAP values 

with rule-based reasoning systems can generate 

patient-specific, interpretable reports that assist 

clinicians in understanding the basis of model 

predictions. Personalized threshold tuning can also be 

implemented to adjust sensitivity levels based on 

patient risk profiles or physician requirements. For 

practical deployment, the model can be integrated into 

a web-based decision support interface, enabling 

healthcare professionals to input patient data and 

receive real-time predictions along with visual 

explanations. Incorporating domain expertise from 

neurologists and geriatricians will help refine feature 

selection, ensuring clinical relevance and trust. Lastly, 

implementing adaptive learning mechanisms—where 

the system periodically updates itself using new patient 

data and real-world feedback—can ensure the model 

remains current and robust in the face of evolving 

diagnostic patterns and treatment practices. 
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