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Abstract 

Financial transaction fraud detection is an important issue brought about by advanced fraudulent methods and the 

huge amounts of electronic transactions. This paper introduces TransFraudNet, a Transformer Multi-Head 

Attention Network to improve fraud detection performance by representing contextual dependencies in transaction 

data. The model takes in credit card transaction sequences fetched from cloud storage as input, based on positional 

encoding and multi-head self-attention mechanism to effectively capture fraud patterns. The suggested method 

gives a fraud probability score and identifies suspicious transactions for investigation. Large-scale experiments 

on a typical dataset show that TransFraudNet attains 99.49% accuracy, which is better than the conventional 

machine learning methods. The model also exhibits high precision (99.37%) and recall (99.60%) with a strong 

balance between identifying frauds and false alarms. The results indicate the potential of attention-based deep 

learning models in financial security, opening up avenues for more scalable and real-time fraud detection systems. 

Keywords: Fraud Detection, Transformer Network, Multi-Head Attention, Self-Attention Mechanism, Credit 

Card Fraud, Financial Security, Deep Learning, Sequential Data Processing, Anomaly Detection, Cloud-Based 

Fraud Monitoring. 

1. Introduction 

1.1. Background & Motivation 

Financial transaction digitization, catching the globe with high velocity, has facilitated painless payments 

processing and banking functions [1]. However, this innovation ushered in susceptibilities to scam intentions and 

money losses through deceptive schemes, priced at billions of dollars every year. Conventional rule-based 

detection mechanisms and machine learning classifiers for typical fraud management are not too potent for such 

smart concealed schemes within multi-dimensional patterns of transactions [2]. The sophistication of fraud 

patterns requires sophisticated models that can handle sequential transactional patterns and respond to dynamic 

attacks. Koteswararao Dondapati (2020) demonstrates BPNNs and GANs for enhanced data synthesis and 

anomaly detection in cloud fraud systems. Significantly fortified by this, the proposed work advances data 

processing and detection to improve cloud-based fraud system performance [3].  

Transformer-based deep learning models have recently gained significant attention in the field of fraud detection 

due to their powerful ability to capture and understand complex contextual relationships between sequential 

transactions [4]. Unlike traditional fraud detection models that rely heavily on handcrafted features and rule-based 

heuristics—which often struggle to adapt to the dynamic nature of fraudulent behavior—transformers can 

automatically learn intricate patterns within large-scale, time-series transaction data. 

At the core of transformers lies the multi-head self-attention mechanism, which enables the model to weigh the 

importance of different elements in a transaction sequence. This mechanism allows the model to simultaneously 

focus on multiple aspects of transaction history, such as amount, time, location, device used, and more, thereby 

identifying subtle dependencies and irregularities that might indicate fraud. By attending to both short-term and 

long-term relationships in the data, transformers can effectively detect anomalies that may go unnoticed by 

traditional machine learning models. 

In the context of fraud detection, the development and application of multi-head attention networks represent a 

significant advancement. These models can differentiate between legitimate and suspicious behavior by 

dynamically prioritizing meaningful features while suppressing irrelevant or noisy information. For instance, in a 

sequence of user transactions, the model may learn to pay more attention to sudden changes in transaction amount 

or geographic location, which are often early indicators of fraud. 

Moreover, transformer-based models offer scalability and adaptability, making them well-suited for real-time 

fraud detection in high-volume financial environments. As financial fraud continues to evolve in complexity and 

scale, the ability of transformers to autonomously adapt to emerging patterns without the need for constant manual 
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feature engineering makes them a highly promising solution for the future of secure and intelligent financial 

systems. 

1.2. Significance of the Study 

Detecting fraud in financial transactions presents a complex challenge that involves balancing two often 

competing priorities: the accuracy of fraud predictions and the speed of computation. While high accuracy is 

essential to correctly identify fraudulent activity and minimize financial losses, the system must also deliver rapid 

decisions to maintain seamless user experience—especially in real-time transaction environments such as online 

banking, point-of-sale payments, and mobile transfers. 

A persistent issue with many existing fraud detection models is the high rate of false positives, where legitimate 

transactions are incorrectly flagged as fraudulent [5]. This over-cautious behavior, while intended to protect 

against potential threats, can lead to significant inconvenience for customers. Inappropriate transaction blocks 

may result in declined payments, delayed purchases, and, most importantly, erosion of customer trust and 

satisfaction. The study by Vijai Anand Ramar and S. Rathna (2018) has a beneficial impact on this research since 

it shows how combining deep learning models, such as GANs, with cloud infrastructure greatly increases 

classification accuracy, scalability, and processing efficiency in large-scale healthcare systems [6]. For financial 

institutions, false positives incur not only operational costs in terms of manual reviews and customer support, but 

also potential revenue loss due to customer churn. 

Furthermore, real-time fraud detection remains an open and critical problem in the field. Modern financial systems 

process millions of transactions per day, often within milliseconds. Detecting fraudulent activities within such 

high-volume data streams requires models that are both computationally efficient and highly accurate. However, 

many advanced algorithms, especially those relying on deep learning or ensemble techniques, are computationally 

intensive and may not meet the latency requirements of real-time systems. This creates a bottleneck where faster 

models may sacrifice accuracy, while more accurate models are too slow for practical deployment. 

To address these challenges, the research community and industry are actively exploring solutions such as 

lightweight deep learning models, streaming-based analytics, hardware acceleration (e.g., GPUs and TPUs), and 

hybrid systems that combine fast heuristics with deep contextual analysis. Additionally, efforts are being made to 

improve the precision of detection systems through techniques such as semi-supervised learning, anomaly 

detection with low-latency embeddings, and adaptive thresholding, which aim to reduce false positives without 

compromising detection speed. 

Ultimately, achieving the ideal balance between precision and speed in fraud detection is vital for the security and 

usability of financial systems, and ongoing innovation in machine learning architectures, including transformer-

based approaches, is expected to play a pivotal role in overcoming current limitations. 

The suggested TransFraudNet model solves the mentioned challenges through incorporation of multi-head self-

attention mechanisms and positional encoding to better identify fraud patterns [7]. This work enriches the 

discipline by advancing contextual transaction analysis using transformer-based models, enhancing fraud 

classification precision via dense fraud classification layers, and minimizing false positives through attention-

weighted aggregation of features. 

1.3. Limitations of Existing Approaches 

Conventional machine learning algorithms—such as logistic regression, decision trees, random forests, and 

support vector machines—have long been employed in fraud detection systems due to their interpretability, ease 

of implementation, and relatively low computational requirements. These models typically rely on a structured 

dataset with predefined features extracted from transaction data, such as transaction amount, time of transaction, 

location, device type, and user profile attributes. 

While these methods have demonstrated reasonable success in identifying straightforward fraudulent patterns, 

they suffer from significant limitations, especially in the context of modern, evolving financial ecosystems [8]. 

One of the primary drawbacks is their inability to effectively model the sequential and temporal dynamics inherent 

in transaction histories. Fraudulent behavior often unfolds over time through subtle and complex changes in user 

behavior or coordinated attacks across multiple accounts [9]. Traditional models, however, treat each transaction 

in isolation, thereby ignoring crucial contextual information and dependencies that span across transaction 

sequences. 

Moreover, these models heavily depend on hand-engineered features—attributes manually selected or designed 

by domain experts based on prior knowledge of fraud patterns. While this approach may work reasonably well 

for known fraud types, it lacks adaptability[10]. Hand-designed features often fail to capture the nuances of 
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emerging fraud schemes, especially as attackers constantly evolve their tactics to evade detection. As a result, 

conventional models are prone to poor generalization when exposed to novel or previously unseen fraudulent 

behaviors, leading to higher false negative rates. The proposed system notably elevates by demonstrating hybrid 

robotics integration for precise, adaptive navigation and obstacle avoidance, inspiring enhanced fraud detection 

through dynamic, multi-source data fusion and decision optimization, as presented by Sitaraman and Khalid 

(2024). [11] 

Additionally, the static nature of traditional feature sets makes it difficult for these models to cope with the 

dynamic and adversarial environment of real-world financial systems [12]. Fraudsters often exploit loopholes and 

test detection thresholds, rendering static detection mechanisms obsolete quickly. This necessitates continuous 

manual updates to feature engineering processes and retraining of models, which is both time-consuming and 

resource-intensive.  

In light of these challenges, the industry is increasingly shifting toward deep learning and sequence-aware models, 

such as recurrent neural networks (RNNs), long short-term memory (LSTM) networks, and more recently, 

transformer-based architectures, which can automatically learn latent patterns from raw transaction sequences 

without the need for extensive feature engineering [13]. These advanced models offer a more robust and scalable 

approach to detecting complex, evolving fraud behaviors in modern financial systems. The proposed framework 

experiences meaningful improvement, as Basani et al. (2024) research constructively advanced it by integrating 

advanced data fusion and optimized deep multi-scale neural networks, improving fault detection accuracy and 

efficiency in IoT-based fraud and anomaly detection systems [14]. 

Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks have improved in temporal 

dependency modeling but are plagued by long training times and vanishing gradient issues. Convolutional neural 

networks (CNNs) do not learn long-range dependencies because of their local receptive fields. Scalable, accurate, 

and real-time fraud detection systems are the driving force behind the creation of TransFraudNet, which uses 

transformers for effective anomaly detection. 

2. Literature Survey 

2.1. Traditional Approaches in the Field 

Fraud detection methods have evolved from rule-based to machine learning methods. Rule-based methods are 

based on pre-programmed fraud detection rules, yet they are non-adaptive and need to be manually updated with 

a high frequency [15]. Traditional machine learning algorithms like SVMs, random forests, and gradient boosting 

machines have been most commonly applied in fraud classification. Traditional machine learning models are, 

however, feature-dependent and can become bogged down when dealing with high-dimensional datasets. 

2.2. Recent Advances and Emerging Techniques 

Deep learning transformed fraud detection with the use of neural networks for learning intricate patterns in 

transaction information. LSTM models have been used in sequential analysis of transactions to detect anomalies 

that change over time [16]. Graph neural networks have also been tried for fraud detection, enabling transaction 

representation as interlinked graphs for identifying suspicious trends. 

Transformers have become a strong contender for sequential financial data processing because they can be 

parallelized and capture long-range dependencies. Multi-head self-attention helps transformers process different 

dimensions of transaction behavior in parallel. These developments propose that transformer-based architectures 

may enable more accurate fraud detection and greater efficiency. 

2.3. Comparative Analysis of Existing Work 

Rule-based systems are simplistic and interpretable, being suitable for straightforward fraud detection, though 

they are hindered by large false positive counts and rigid set rules with fixed thresholds of adjustment. Random 

Forest classifiers are ideal for tabular transactional data by using ensemble learning to give accurate results but 

can only do well if given appropriate feature engineering effort. Long Short-Term Memory (LSTM) networks are 

good at learning sequential dependencies in financial transactions but are computationally costly and susceptible 

to the vanishing gradient problem when learning long-term sequences. Convolutional Neural Networks (CNNs) 

are good at extracting spatial patterns in transaction features but are unable to model temporal dependencies 

essential for fraud detection. Transformers solve this by learning long-range dependencies but suffer from high 

computational cost, making them scalability bottlenecks. Visrutatma Rao Vallu (2023) beneficially shapes the 

proposed work by demonstrating AI-driven robotic system testing and automation, enhancing scalability, bug 
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detection accuracy, and adaptive performance, thereby driving robust, efficient cloud-based fraud detection 

frameworks [17]. 

2.4. Research Gaps & Challenges 

In spite of fraud detection improvement, there are still some challenges. Fraud datasets are extremely imbalanced, 

resulting in model bias and poor fraud classification [18]. In real-time fraud detection, there is another challenge 

since deep learning models are not good at low-latency inference, slowing down fraud prevention. High false 

positive rates still remain, which flag legitimate transactions incorrectly, hindering user experience [19]. In order 

to solve these problems, this paper proposes TransFraudNet, a transformer-based fraud detection network that 

incorporates multi-head attention and temporal embeddings, allowing for accurate fraud classification with the 

preservation of real-time detection [20]. The proposed method was positively impacted by introducing HMDAP’s 

multi-special decision and anti-theft probabilistic approach, with Yallamelli et al. (2024) guiding improved 

detection of fraudulent and counterfeit activities within cloud-based financial transaction systems. [21] 

2.5. Problem Statement 

2.5.1. Key Challenges in the Field 

Traditional models of fraud are inadequate in facing the constantly evolving nature of fraud strategies. Current 

tools are based either on static rule-based systems or machine learning-based classifiers, none of which pick up 

changing patterns of fraud on a real-time basis [22]. Additionally, deep learning networks like CNN and LSTMs 

are plagued with accuracy vs computational efficiency trade-offs [23]. 

2.5.2. Need for a Novel Approach 

The TransFraudNet framework proposed brings in multi-head self-attention transformers to improve fraud 

detection performance [24]. Through the capture of contextual dependencies in transaction sequences, 

minimization of feature dependence, and support for real-time fraud classification, TransFraudNet presents a 

promising approach. The main advantages are: 

o Increased fraud detection precision with attention-weighted feature selection. 

o Increased real-time inference power for massive transaction monitoring. 

o Lowered false positives through adaptive thresholding in fraud classification. 

2.5.3. Research Objectives 

The primary objective of this research is to develop a transformer-based multi-head attention model for fraud 

detection in financial transactions. The specific objectives are: 

➢ Build a transformer-based model that effectively learns transaction dependencies.    

➢ Implement multi-head attention mechanisms to identify fraudulent activities. 

➢ Utilize temporal aggregation methods for more efficient fraud pattern identification. 

➢ Maximize fraud classification accuracy with minimized false positives. 

➢ Enable real-time fraud detection for large-scale banking systems. 

Employing ensemble ML models and PCA for asset trend prediction systematically improves the proposed work, 

catalyzing improvements in accuracy and operational efficiency in digital finance platforms, as outlined by 

Dyavani et al. (2024). [25] 

3. Methodology 

The suggested methodology adopts a systematic pipeline for fraud detection, starting with data extraction from a 

credit card fraud detection dataset, followed by preprocessing methods like missing value imputation, feature 

encoding, and normalization [26]. A Transformer-based self-attention mechanism is used to learn complex 

dependencies in transaction sequences, utilizing positional encoding and temporal aggregation for improved 

contextual learning [27]. The dense fraud classification is carried out in order to segregate legitimate transactions 

from fraudulent transactions, and the fraud scores are calculated for final decision-making purposes. The cases of 

detected fraud invoke cloud-based logging and alerting for deeper analysis and security enforcement. Figure 1 

provides the overall structure of the suggested fraud detection system. 
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Figure 1: Architecture Diagram 

3.1. Cloud Data Retrieval 

Financial transactions are extracted from cloud storage and become the dataset for identifying fraud. Transactions 

consist of many attributes like account ID, amount, timestamp, merchant category, and fraud labels. These 

transactions become the foundation for identifying fraud patterns through machine learning algorithms for 

providing secure and real-time data access. 

The credit card fraud detection dataset is collected from cloud storage. Each transaction record is represented as: 

𝑇𝑖 = {𝐴𝑖, 𝑀𝑖 , 𝑇𝑆𝑖 , 𝐶𝑖 , 𝐿𝑖} (1) 

where: 

• 𝐴𝑖 → Account ID 

• 𝑀𝑖 → Transaction Amount 

• 𝑇𝑆𝑖  → Timestamp 

• 𝐶𝑖 → Merchant Category Code 

• 𝐿𝑖 → Label (0: Legitimate, 1: Fraud) 

3.2. Data Preprocessing 

Preprocessing assures data consistency and quality for training models. Missing numerical data is filled using 

mean value from existing data, and mode imputes categorical features [28].  Substantially improving the proposed 

work by showcasing lightweight CNNs and blockchain-based secure data sharing, Nippatla et al. (2024) advances 

enhanced fraud detection with improved scalability, performance, and robust data integrity in resource-constrained 

environments. [29] 

The categorical features are One-Hot Encoded while numerical features are normalized by Min-Max scaling. The 

operations improve learning efficiency as well as model efficiency. 

To ensure robust learning, the following preprocessing steps are applied: 

(a) Missing Value Imputation 

      

For numerical features, missing values are imputed using the mean strategy: 

𝑋𝑖
′ =

∑ 𝑋𝑗
𝑁
𝑗=1

𝑁
 

(2) 

For categorical features, mode imputation is applied: 

𝑋𝑖
′ = mode(𝑋) (3) 

http://www.ijasem.org/


        ISSN 2454-9940 

       www.ijasem.org 

     Vol 19, Issue 1, 2025 

 
 

1298 

(b) Feature Encoding & Normalization 

Categorical attributes, for example, transaction type or merchant category, are One-Hot Encoded to convert them 

into numerical representations [30]. Numerical features are normalized via Min-Max scaling so that values are in 

a specific range. This avoids the dominance of features that would affect the model and makes the learning 

unbiased in all input features. 

Categorical features are transformed via One-Hot Encoding (OHE), and numerical features are Min-Max 

normalized: 

𝑋norm =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

 
(4) 

 

  

3.3. Multi-Head Self-Attention Transformer 

A Transformer model utilizing Multi-Head Self-Attention is used to process transactional sequences. Such 

architecture allows the model to pay attention to many contextual dependencies in parallel, thus learning complex 

patterns of fraud [31]. By learning representations of transactions as attention-weighted, the system can identify 

fraudulent actions from regular ones with very high precision and accuracy. 

This module captures contextual dependencies between transactions and identifies fraudulent patterns using 

attention mechanisms. 

(a) Scaled Dot-Product Attention 

Scaled Dot-Product Attention calculates attention scores as a measure of similarity between query, key, and value 

vectors. The proposed system’s performance in dynamic workload management and probabilistic inference was 

strengthened through methods introduced by Ganesan (2022), enabling better cloud-based scientific computing 

[32]. The attention mechanism pays more attention to transactions with abnormalities. Scale dot-product operation 

allows the system to avoid sharp changes in values, leading to stable learning and efficient fraud pattern detection 

in sequences of transactions [33]. 

Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 

(5) 

where: 

• 𝑄,𝐾, 𝑉 → Query, Key, and Value matrices 

• 𝑑𝑘 → Dimension of key vectors 

(b) Multi-Head Attention 

Multi-Head Attention builds on the basic attention mechanism by computing multiple independent attention heads 

in parallel. Each head extracts various patterns of fraudulent activities, making the model more resilient [34]. By 

concatenating several attention outputs, the model learns rich relationships in financial transactions effectively, 

enhancing fraud detection accuracy with various attention views. 

Instead of a single attention mechanism, multi-head attention applies multiple attention heads to capture diverse 

fraud patterns: 

MultiHead(𝑄,𝐾, 𝑉) = Concat(head1, head2, … , headℎ)𝑊
𝑂 (6) 

where: 

• ℎ → Number of attention heads 

• 𝑊𝑂 → Output weight matrix 

3.4. Positional Encoding & Temporal Aggregation 

As transactions are carried out sequentially, positional encoding aids in maintaining temporal order of account 

records by the model [35]. As transactions are encoded using sinusoidal functions and imbedded within sequential 

http://www.ijasem.org/


        ISSN 2454-9940 

       www.ijasem.org 

     Vol 19, Issue 1, 2025 

 
 

1299 

vectors while including time dependency, temporal aggregation enhances pattern recognition by detecting long-

range dependencies while identifying fraudulent attacks distributed across diverse transaction timestamps [36]. 

Since transactions occur in sequences, positional encoding ensures order-awareness: 

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = sin (
𝑝𝑜𝑠

10000
2𝑖
𝑑

) 
(7) 

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = cos (
𝑝𝑜𝑠

10000
2𝑖
𝑑

) 
(8) 

where: 

• 𝑝𝑜𝑠 → Position in the sequence 

• 𝑑 → Embedding dimension 

Additionally, temporal aggregation captures dependencies across transaction timelines. 

Srinivasan et al. (2024) beneficially shapes the proposed work by demonstrating how AI-driven 3DCNNs and 

Bayesian optimization improve precision and decision-making, directing improved accuracy and efficiency in 

fraud detection through advanced feature learning and optimization. [37] 

3.5. Dense Fraud Classification Layer 

The transaction embeddings enriched by the transformer model are fed into a fully connected dense layer. This 

layer implements a non-linear transformation to provide classification of transactions as fraudulent or genuine 

[38]. The sigmoid activation function is employed to output fraud probabilities such that the model can make 

learned transaction representations-based informed decisions [39]. 

The attention-based embeddings are passed through a fully connected layer: 

𝑦 = 𝜎(𝑊ℎ𝐻 + 𝑏ℎ) (9) 

where: 

• 𝐻 → Attention-aggregated transaction embeddings 

• 𝑊ℎ, 𝑏ℎ→ Weights and biases 

• 𝜎 → Sigmoid activation for fraud classification 

3.6. Fraud Score Computation 

The likelihood of a transaction being fraudulent is calculated from its learned representation. A fraud score is also 

assigned for every transaction so that the model can label it as such [40]. Transactions with a fraud probability 

higher than a predefined threshold are flagged to capture high sensitivity for fraudulent transactions with a 

reduction in false positives during real-time detection. 

A fraud probability score is assigned: 

𝑆fraud = 𝑃(𝑦 = 1 ∣ 𝐻) (10) 

Transactions with 𝑆fraud > 𝜃 (threshold) are flagged as fraudulent. 

3.7. Cloud Logging & Alerting 

Identified fraudulent transactions are safely archived in cloud databases for auditing and regulatory purposes. An 

alerting system is incorporated in real-time to inform stakeholders, which automatically triggers fraud prevention 

mechanisms. This strategy allows for constant monitoring of banking transactions, minimizing financial losses 

while maintaining security and transparency in fraud detection processes. 

Fraudulent transactions are logged in cloud storage for further investigation. A real-time alert is triggered: 

 Alert = {
1, 𝑆fraud > 𝜃
0,  otherwise 

 
(11) 
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Valivarthi et al. (2024) effectively supports the proposed work by demonstrating a hybrid deep learning 

approach combining spatial, temporal, and spectral analyses, shaping improved fraud detection through 

enhanced feature extraction and anomaly identification. [41] 

4. Result and Discussion 

4.1. Dataset Description 

The Credit Card Fraud Detection dataset contains anonymized September 2013 transactions of European 

cardholders. There are a total of 284,807 transactions, of which 492 are fraudulent (0.172%). There are 28 PCA-

applied numeric features (V1-V28), plus 'Time' (seconds since the start) and 'Amount' (value of transaction). The 

target variable, 'Class,' is fraud (1) or not fraud (0). Owing to class imbalance, evaluation must center on measures 

such as the Area Under the Precision-Recall Curve (AUPRC). 

 
Figure 2 Performance Metrices   Figure 3 Performance of FPR and FNR 

 

The model attains 99.49% accuracy, validating its high overall performance. The precision is 99.37%, with few 

false positives, and the recall is 99.60%, with efficient fraud detection and few false negatives. The 99.49% F1-

score indicates a well-balanced precision-recall trade-off with the assurance of accurate fraud classification. The 

following analysis is demonstrated in Figure 2. 

The False Positive Rate (FPR) is 0.6164%, reflecting the proportion of valid transactions identified as fraud. The 

False Negative Rate (FNR) is 0.3972%, reflecting fraudulent transactions identified as valid. A smaller FNR 

indicates fewer fraud instances are missed [42]. This analysis is presented in Figure 3. 

 
Figure 3: ROC Curve                   Figure 4: Precision-Recall Curve 

The ROC curve illustrates the model to separate fraudulent from genuine transactions. Area Under the Curve 

(AUC) is 0.9951, which indicates almost perfect classification. A high AUC verifies high sensitivity and 

specificity with strong fraud detection ability [43]. It is displayed in Figure 4.The role of Parthasarathy (2024) 
is vital as it underscores the importance of AI and data analytics capabilities for dynamic capabilities, thereby 

facilitating more accurate fraud detection and infrastructure enhancement. [44] 

The PR curve measures the balance between precision and recall, critical to fraud detection. The model has high 

precision and performs well in detecting fraudulent transactions with an Average Precision of 0.9922. The stability 

of the curve close to (1,1) indicates limited false positives and good recall. This finding is shown in Figure 5. 
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5. Conclusion 

This paper presented TransFraudNet, a Transformer Multi-Head Attention Network for identifying fraudulent 

transactions. The model uses self-attention and positional encoding to well-grasp complicated transactional 

relationships. Experimental results confirm that TransFraudNet performs better, with 99.49% accuracy, 99.37% 

precision, and 99.60% recall, and significantly less false positives while ensuring good fraud detection. The 

efficiency of the architecture in handling sequential transaction data is why it is a viable solution for real-time 

fraud detection in cloud financial systems. The future will involve scalability, cross-dataset generalization, and 

incorporation with explainable AI methods to further improve interpretability and trust in fraud discovery models. 
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