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Abstract—  
 

We provide a new strategy for long-range route planning that 

makes use of a learnt model to anticipate the results of local 

movements with perhaps incomplete information. What the 

model is trained with data consisting of unsupervised path 

acquisition. This part is used by route planners who rely on 

sampling to determine the quality of potential branch additions to 

the planning tree. We use two robots—a complicated, simulated 

quadruped robot (Animal) traversing tough terrains and a basic, 

actual differential-drive robot (Mighty Thyme) traversing 

unknown geometry and obstacles—to demonstrate the use of this 

pipeline. Finally, we demonstrate that planning yields logical 

routes by quantitatively assessing the model's effectiveness in 

forecasting the outcome of both local and long-range actions. 

 

I. INTRODUCTION 
 

SAMPLING-BASED PLANNING [1] is an effective 

and general route planning technique that frames the 

issue as the search for a series of viable local 

movements, each of which connects the starting point 

with the destination. Two states in close proximity to 

one another, with the first local motion beginning at 

the source state and the second local motion 

culminating at the destination state. A local motion 

estimator takes into consideration robot kinematics, 

local planners and controllers, and environmental 

information to estimate the feasibility of local 

movements. 

In most cases, the local motion estimator is a 

somewhat straightforward component that only 

verifies that a direct move between two states does 

not result in a collision with any known obstacles and 

does not violate any of the robot's kinematic 

restrictions. But this method won't work when the 

robot's interactions with its surroundings are 

complicated and maybe random. Think of a robot 

with legs that has to map out a lengthy route through 

rough terrain it is familiar with. Another method of 

determining whether a local motion is conceivable 

involves using precise Follow the robot's virtual 

progress as it traverses the simulated landscape.  

Given the form of the terrain, the nature of the 

interaction between the robot and the terrain, the 

capabilities of the robot's sensors and its low-level 

controls, and the likelihood that the robot may lose 

traction. This having only incomplete information 

about the environment (for instance, we can know the 

terrain topology but not its softness/friction 

characteristics at planning time) and a high 

computing cost (a local motion estimator is queried 

extremely frequently, and hence has to be quick) are 

both problems. The major thing we bring to the table 

is a new way of doing things, in which we: develop 

an estimator to forecast the result (e.g., success 

probability, time, energy,...) of movements joining 

two neighboring states, given the available 

(potentially imperfect) information about the 

surrounding environment; 

We identify possible local movements and give them 

a cost to be minimized (for example, finding the 

route with the least number of turns) using the learnt 

estimator inside a sampling-based global planning 

framework. with low risk of failure) given that (1) a 

local planner and controller are at our disposal, (2) 

our understanding of the environment is fixed (in 

particular, at planning time, the map covers source 

and target locations, and the robot does not acquire 

new information during trajectory execution), and (3) 

the robot cannot recover from setbacks and therefore 

does not require dynamic re-planning. In Section VI, 

we will quickly go through various options for easing 

these constraints. When training an estimator, it is 

helpful to gather examples in the form of input-

output pairs, where the input is a set of neighbouring 

states and any accessible information about the 

surrounding environment and the output is the result 

of the action taken. These measurements may be 

taken either virtually or in the actual world, with the 

robot performing various man oeuvres in the target 

area or recording the results. The method may be 

done in a self-supervised [2] form if the robot can 

feel the result independently (for instance, by using 

visual odometer to monitor progress). May gradually 

adjust the estimator to fit new conditions this method 

works well for scenarios where the robot's actions 

will not always have the same result, known as a 

stochastic scenario. In particular, employing 

probabilistic machine learning [3] methods ensures 

that uncertainty in the estimator inputs is correctly 

transferred to uncertainty in the outputs, which is 

then dealt with in a systematic manner during 

planning. 

 

II. RELATED WORK 
 

A. Path Planning 
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Imitation learning from the paths of experts is a 

typical approach of incorporating machine learning 

into robotic route planning [4]. According to this line 

of inquiry, Pfeiffer et al. [5] teach a Given current 

readings from a laser scanner, a convolutional neural 

network (CNN) may calculate steering instructions to 

approach the desired target position; Ollas et al. [6] 

evaluate expert trajectories to learn properties of 

travelled map regions, and then compute cost maps in 

a Bayesian framework; Bagel et al. To get the ideal 

cost function for the expert trajectories, [7] use 

inverse optimal planning. In contrast, we use a 

sampling-based approach to graph search in our 

study. In order to deal with high-dimensional 

configuration spaces, sampling-based motion 

planning algorithms [1] depend on a local planner (or 

steering function) to establish the connection between 

nodes of a graph, allowing for control-space 

searching to account for dynamical or differential 

constraints. After a target state has been identified, 

the Rapidly Exploring Random Trees (RRT) [8] 

method builds a tree by sampling the configuration 

space to add edges that lead to viable states. Connects 

two nodes in a tree, the route between them is 

returned. A different approach is provided by the 

Probabilistic Road Maps (PRM) [9] programmed, 

which constructs a network of possible edges within 

which the optimal route may be determined using 

methods such as Dijkstra's algorithm. When given 

enough time to develop the graph, sampling-based 

planners are able to determine a route from source to 

destination with probability 1. Asymptotically, 

optimal versions like RRT* and PRM* converge to 

the route with the lowest cost [10]. Components of 

sampling-based planners have been enhanced using 

machine learning, for example, to automatically 

choose the appropriate sampler [11] or the optimum 

expansion strategy depending on the neighborhood of 

a node [12]. Here, we apply machine learning to a 

different part of the system—namely, the part that 

establishes the link between two neighboring states. 

B. Search Spaces 

Pathways that may be taken, or viable paths, are 

discovered by the use of certain planning procedures, 

which may, for instance, search for paths that avoid 

collisions or investigate the space of all possible 

states. To maintain a steady walk [13]. In contrast, 

action space is what planners look for when 

determining what to do next. Previously, we assessed 

the practicability of movements on a horizontal grid 

[14]. Instead, we randomly choose data from a much 

wider pool in our study. 

C. Local Motion Estimation 

One important part of global route planning 

algorithms is estimating the practicability of local 

movements. Cells in 2D maps, for instance, may be 

given reversibility scores that are useful for guiding 

legged robots. to take into consideration the robot's 

shape and the roughness and slope of the ground 

[15]; in a more involved technique, Fankhauser et al. 

[13] first calculate secure footholds, and then body 

and leg trajectories to traverse steep parts and high 

steps. When the robot's interaction with its 

surroundings is intricate, one may train a model to 

provide reversibility scores: 

Before using a convolutional neural network (CNN) 

to calculate the confidence of retaining balance on 

prospective footholds, Wellhausen et al. [16] utilize a 

weakly-supervised technique to segregate terrain 

classes from a front-facing camera picture. Methods 

with similar goals have been developed, for instance 

in the LAGR project [17], which include the 

classification of terrain before assigning a cost to a 

grid map. Given a local planner, our proposed 

method first trains an estimator to predict which local 

motions are feasible through a large number of 

random trials on a variety of terrains; then, instead of 

constructing a fixed resolution grid map, it samples 

from the entire space of local motions to construct a 

dense planning tree. Moreover, it doesn't depend on 

carefully crafted models of the landscape to function, 

but rather it learns broad characteristics by seeing 

how they're used in context across different types of 

terrain. Terrains. Chiang et al. [18] suggest a similar 

method in their recent work for kin dynamically 

restricted robots, whereby a local planner taught with 

reinforcement learning is integrated into a global 

sampling-based planner. In imitation learning, the 

expert trajectories for a legged robot come from a 

complex high-dimensional footholds planner [7] 

rather than a human pilot, using the same basic 

concept of employing machine learning to imitate the 

outputs of a computationally costly planner. 

 

III. MODEL 
 

With the use of machine learning, we analyze the 

costs and viability of potential global route plans (see 

below). Fig. 2). Regional Activity (A.) The robot 

operates through a world about which it has only 

partial information K modeled at planning time. 
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Figure 2: Definitions discussed in Chapter 3: To 

determine the likelihood of success and cost of 

candidate edges for a tree, a sampling-based planner 

(c) queries a model (b) trained using a dataset (a) of 

local motion outcomes. Establishing a link between s 

and t as sources and destinations. The model's 

utilization of expert knowledge, shown by the orange 

circle, is illustrated. Information. Two neighboring 

states in the robot's configuration space C create a 

local motion denoted by the equation e = (q1, q2) C2. 

Local motion might be represented as a pair of poses 

in the two-dimensional special Euclidean group SE 

(2), and knowledge as an obstacle occupancy grid, 

for a differential-drive wheeled robot navigating a 

plane with obstacles. Using its local planner and its 

controller, the robot moves along the time-

parameterized trajectory: [0, T] C, where (0) = q1. As 

a rule, a number of Different trajectories can result 

from the same local motion being executed due to a 

number of factors, including: local planners that use 

random algorithms; incomplete knowledge of the 

environment (possibly based on the robot's sensors); 

stochastic interaction with the environment while 

executing the motion (such as when a robot slips, for 

example). We thus assume that is taken at random 

from a distribution that takes into account both the 

external conditions (environment, e) and the local 

information (). Key K, where K is the subset 

containing any information about he’s surroundings; 

in the aforementioned example, local knowledge 

would be the piece of the occupancy grid map that 

includes the source and target postures. 

B. Acquiring the Ability to Forecast Neighborhood 

Paths Through the application of supervised machine 

learning, we are able to foretell the result of a certain 

local motion (i.e., the predicted value of the trajectory 

descriptors). To be more specific, we are taught the 

mapping (e,Ke) y = E[d(e,Ke)] (see Fig. 2(b)). To 

train a machine learning model, we first amass a 

large dataset consisting of examples of local 

trajectories by randomly choosing local movements 

across contexts and noting the values of their 

descriptors d(). 

1) Dataset Collection: If the robot directly extracts 

the trajectory descriptors from on-board sensors, it 

may gather the dataset (shown in Fig. 2(a)) in an 

unsupervised fashion. The first algorithm is a random 

walk through trees (RRT) based planner that uses a 

model to forecast the predicted descriptors y of local 

motion trajectories and information K about the 

environment to calculate a route from s C to t C. 

When adding a cost function C to the tree, only edges 

with a success probability greater than are considered 

for inclusion. 

 

That of its interior. We choose a local coordinate 

frame, centered on q1, since the only information 

necessary for relevant descriptors is the relative 

location of q2 with regard to q1, and the local 

knowledge surrounding q1. Place q1 to stand in for 

q2 and Key. In the end, the dataset includes several 

examples of the type (Kq2, q2, d1, d2, . . . , dn). The 

Second Part Is Studying: The model produces a 

variety of results, some of which are used for 

classification and others for regression, since some of 

the descriptors are discrete (such as S) while others 

are continuous (such as time and energy). In Fig. 5, 

we depict the structure of the deep neural network we 
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use as a local motion estimator for two distinct 

planning issues. Path Planning on a Global Scale The 

global route planner seeks the optimal path for the 

robot to take from s C to t C, represented as a series 

of local movements = (e1, e2,. Using the trained 

model's calculated descriptors, we may differentiate 

between trajectories. More specifically, we 

characterize the path's incremental cost as  

 

Where the price of the nearby movements is based on 

the descriptions that have been projected. If we 

assume, for the sake of argument, that the odds of 

Due to the fact that the robot's local movements may 

be completed independently of one another, 

minimizing the route survival risk R can be a 

challenging but rewarding task. 

 

Using a sampling-based planner that repeatedly 

constructs a network of states linked by edges 

representing possible local states; we are able to 

solve the global planning issue. Movements (like 

local motions that have a good chance of 

succeeding). Our system utilizes permutations of the 

Rapid Exploring (Dense) Tree (RDT) [19] method 

for answering single-use route planning questions. 

Typically, these algorithms will sample points from 

the configuration space and iteratively build a treat C 

that spans the space (with a bias towards t) and 

 

 

 

FIGURE 3: Animal pipeline (a) by selecting q1 

evenly on a map and q2 in an annulus surrounding it, 

we gather around 90 K random trajectories. In order 

to utilize RRT* to calculate plans (c), we first use 

these trajectories to train a model (b). Knowledge of 

the immediate area around the robot, denoted by the 

coordinates (q1,q2), is stored in a 2m 2m grid patch 

P. Height maps are shown in grayscale, while the 

orange line represents the terrain's elevation. All 

illustrations are drawn to scale and based on actual 

scientific research. 

As shown in Figure 2(c) and Algorithm 1, the 

predictions play a crucial role in the planning 

process, and are used to connect the nodes to the tree 

via local motions. We cannot evaluate infinitesimally 

short local motions (otherwise their descriptors 

would be meaningless), which is the main difference 

with the original RDT algorithms like RRT, and thus 

the asymptotic properties are not preserved. RRT* 

[10] and SST [20] (Stable Sparse RRT) are two ideal 

variations that employ a cost C (here estimated from 
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the expected descriptors) to create a tree of optimal 

pathways by connecting them with edges. To the tree 

may necessitate branch competition or local 

reorganization (RRT*) (SST). 

 

IV. CONDITIONS FOR THE TESTS 
 

Here we provide two examples of how the model 

described in Section III may be put to use, one for the 

simulated Animal robot shown in Fig. 1, and the 

other for a real-world version of the Mighty Thyme 

robot. The two robots navigate a 2D landscape 

represented as height maps (i.e., grayscale pictures 

with altitude values associated with each pixel), 

while we disregard non-geometric properties (like the 

surface material). The robot relies on local height 

maps, which are square patches of height map data 

centered on the robot's position and aligned with its 

orientation, to guide its moves in the immediate 

vicinity. Using the Open Motion Planning Library 

(OMPL) [21], we deploy a sampling-based planner. 

A. Simulated Animal \s1) Robot and Environment: 

Animal [22] is a state-of-the art\quadruped robot 

developed at ETHZ for autonomous operation in 

challenging environments, with the ability to walk on 

\sough terrain. Gazebo (see Fig. 1(a)) is used to 

model Animal and its 80 cm 60 cm 70 cm footprint 

so that we can assess the robot's ability to navigate 

around various obstacles (such as steps, holes, slopes, 

and bumps) and design routes that avoid them. For 

the sake of clarity, we restrict our analysis to 

orientation-preserving local motions, so that the 

horizontal position of Animal’s centre defines the 

configuration space C = R2. Local knowledge is 

represented as a 100 PX 100 PX (2m 2m) patch P of 

such height map, with a resolution of 2 cm per pixel 

(see Fig. 3(a)). 

To compensate for the unpredictability of the 

environment, the simulated Animal uses a simple, 1 

locomotion planner and a complex closed-loop 

feedback controller [23]. The only piece of 

information that is fed into the local planner is the 

relative target pose, which is represented by the 

equation q2 = (x, y,). For any sampled trajectory γ, 

\sd(γ) ∈ {0, 1} × R+ is composed of success S (“has 

the robot \arrived near enough to q2?”) and duration 

Three, we gather a dataset of about 90 K samples 

(76% with S = 1), where each sample is a tuple (P, x, 

y, S, T), by randomly spawning the robot on stable 

poses. It takes the robot on average 8 steps (about 10 

seconds) to complete a local motion (Fig. 3(a)), and it 

can achieve this by randomly sampling a relative 

target point at a distance between 15 cm and 50 cm 

along a random direction. We collect information 

from 12 unique environments (1,200 square meters in 

total) that feature difficult obstacles like slopes, 

bumps, holes, rails, and steps. Height maps of the 

landscape are generated procedurally using a 

superposition of simplex noise at varying scales, as 

we did previously in our work [14]. 

A deep neural network is trained to predict the 

success and duration of local motions, as shown in 

Fig. 4. An estimator consists of two phases: 

Convolutional layers make up the first type. That 

function on the height map patch (which is 2D and 

structured like an image); the second stage processes 

the resulting features and takes the relative target 

point as an input (x, y). The model's output is a dense 

layer with softmax activation, which calculates a 

success probability yes and an estimated duration yet. 

Categorical cross-entropy (success) plus mean 

squared error gives the loss function (duration). All 

12 of the dataset's landscapes are unique: the training 

set has 70K samples from 7 landscapes, the 

validation set has 10K samples from 2 landscapes, 

and the evaluation set has 8.7K samples from 3 

landscapes. Algorithm 1 is derived from RRT*, and 

so is Algorithm 5's planner, which uses the trained 

local motion model to compute global paths. 
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Powerful Thyme pipeline, as shown in Fig. We use 

SST to plan safe trajectories (= 0.98) that minimize 

duration by (a) randomly changing the robot's angular 

speed every 2 s in order to collect 1 s training 

samples labeled according to the occurrence (or not, 

S 0, 1) of a collision, and (b) using this model to 

predict the probability of a collision in the next 1 s 

for given angular and linear speeds. Extensive 

familiarity with the area the grid patch P (orange 

stroke) measures 50 cm on all sides and centers on 

the robot (q1, q2). Anything that involves drawing is 

to scale and rely on empirical evidence. Please RRT 

in III.C1. In particular, the planner repeatedly picks a 

new random starting point q and makes moves to try 

to make the tree bigger. From q's nearest neighbor 

along a 45-centimeter-long segment in the direction 

of q. Candidates are kept if q as long as the distance 

is greater than 15 cm; otherwise, they are eliminated. 

Each edge is given a risk of log yes based on the 

estimator's success score yS, and edges with scores 

below a threshold of = 0.5 are deemed impossible to 

construct. Since RRT* is an anytime algorithm that 

converges towards the optimal solution, we let the 

tree grow within a given computational time budget 

in order to find the path with the minimum survival 

risk, as defined by Eq. (1). 

Thyme, the Powerful The Robot and Its 

Surroundings, Part 1 An improvement upon the 

original small educational robot Thyme [25], the 

Mighty Thyme [24] is designed for scientific study. 

The robot's position and orientation make up its 

configuration space, denoted by the notation C = SE 

(2), and are transmitted to its two differentially driven 

wheels. Figure 1(b) shows a small mobile robot 

navigating a room with a flat floor and a number of 

obstacles on it; to make the planning problem more 

interesting; we have given the robot an extra rigid 

arm on its right side. 

Dimensions for the whole Mighty Thyme are 11 by 

11 by 20 centimeters, while the arm is 10 by 2 by 0.5 

centimeters. The purpose of this study is to put the 

model presented in Chapter III to use in a different 

setting: the pursuit of knowledge. To foresee whether 

or not the robot (whose geometry is presumed to be 

unknown) will clash with obstacles during a brief 

motion, and to utilize this knowledge to design 

courses that avoid collisions. Local knowledge is 

represented as robot-centered 80 PX 80 PX (50 cm 

50 cm) patches, while environs are represented as 

height maps with a resolution of 0.625 cm per pixel. 

Second, nearby motion: In the same way as Animal 

can conduct arbitrary local movements in free space 

with the use of a pretty complicated 

planner/controller combo, the Mighty Thyme can do 

the same. Instead, we give a simplified model that 

exemplifies the universality of our method by 

restricting local movements to constant linear and 

angular velocities of v = 8 cms1, 8 cms1 respectively. 

 

The Animal Neural Network design, as described in 

Section IV-A is shown in Figure 5. 

The model calculates a probability of attaining the 

target posture and an estimate of the robot's pose 

from the given robot-centered height map patch P 

and the relative target goal (x, y). Time necessary. 

The architecture of Mighty Thyme is fairly similar to 

that of the previous game (see Section IV-B). The 

Third Step Is to Gather the Datasets: We collect 

information using a controller that chooses an angular 

velocity at random every two seconds. After every 

collision, the robot remembers the details and 

reverses its direction of travel (going backward if it 

was going ahead and vice versa). There is a motion 

capture system that keeps track of where the robot 

and the obstacles are at all times. We operate the 

robot for 120 minutes over six maps, recording 

around 460 collisions. After the data is acquired, it is 

processed to extract 1 second trajectories with 

constant controls, with S = 1 for trajectories that do 

not include collisions and S = 0 for those that do (see 

Fig. 4(a)). We amass a collection of 104 K samples in 
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the format (P, v, S). Four) we use the CNN 

architecture shown in Fig. 5 for our training, with the 

exception that our output is limited to the success 

probability (no-collision) of the motion. The dataset 

is created by us. 52k samples were utilized for 

training (3 maps), 20k for validating (1 map), and 

30k for judging (all from separate sets of maps) (2 

maps). Tracking Your Steps: We use a modification 

of SST that samples control inputs to attain a local 

target point in order to account for the differential 

restrictions of the robot's movements. To be more 

specific, the planner adds an edge to the tree only if it 

reduces the local cost-to-come, and SST repeatedly 

chooses a random posture q SE(2) and multiple 

control inputs, picking the one that would bring the 

robot closer to q from its nearest neighbor. Feasible 

edges are assigned a constant cost of 1, which is 

proportionate to their duration, and edges with a 

chance of success below = 0.98 are discarded. SST is 

a nearly optimum solution converge at any time, 

therefore we let the tree grow for a predetermined 

period of computing time. 

 

V. EXPERIMENTAL RESULTS 
 

How accurate are our predictions of the results of 

local motions? 

How helpful are the neighborhood models in 

determining where to go? Do our presumptions from 

Section III make sense? And in particular are were 

we correct to take yes as the chance of success for 

individual actions and then use it to determine the 

likelihood of success for a complete trajectory? To 

begin answering these problems, we now offer 

experimental data for the two configurations 

described in Section IV. 

The predictions made by the learnt model are 

consistent with the map, as shown by qualitative 

testing shown in Figs. 3(b) and 4(b): the Animal 

model accurately estimates that movements that step 

over the short wall are dangerous, and the Mighty 

Thymiomodel appropriately predicts collisions. 

Similarly, Figs. 3(c) and 4(c) illustrate that the 

planner computes logical courses between manually 

selected sites on interesting maps: Animal avoids 

steep stairs and slopes, while Mighty Thyme (with an 

arm on the right) remains on the left side of a corridor 

to prevent collisions. Several examples of planned 

pathways and their actual implementations may be 

seen in the film included in the appendices. A. 

Predicting Motion Close to Its Origin 1) Animal: The 

degree to which the Animal model's predictions 

match the test's real values is shown in Fig. 6: left. 

Data set; the associated performance ratings are 

shown in the grey assessment columns of Table I 

(AUC = 0.889) for evaluating single local 

movements. Both of the model's predictions are 

highly accurate. Table II and Fig. 6: right show the 

findings of the Mighty Thyme model predicting 

success probability (AUC = 0.972), which are similar 

to those found in the previous section. Inadequate 

calibration (in comparison to the Animal model) of a 

model that tends to overstate the success probability 

may be attributable to the low number of collisions 

experienced by the robot during data collection (one 

unsuccessful sample for every 25 successful 

samples). 

 

 

Fig. 6: Animal (8700 samples, left and centre) and 

Mighty Thyme (30 K samples, right) local motion 

model assessment (ground truth vs. prediction). The 

yes values in the success plots are divided up into 

0.1-point bins. Throughout the time frame figure, 

where the dots represent the mean value of T for 

outputs yT clustered in 1 s width bins and the grey 

area is bounded by 1 standard deviation. Black 

dashed lines depict flawless models. 

PREDICTION OF SUCCESS USING AN ANIMAL MODEL 

TABLE I NUMBER OF SAMPLES FOR THE TWO CLASSES 

AREA UNDER THE ROC (AUC). IN THE COLUMNS ARE 
THE RESULTS FOR INDIVIDUAL LOCAL MOTIONS e (IN 

GRAY), PATHS BETWEEN DISCRETE ORIGIN AND 

DESTINATION POINTS ON CHOSEN MAP LAYOUTS (IN 
WHITE), AND ALL SUBPATHS sub EXTRACTED FROM 

SUCH PATHS (BLUE) 
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TABLE II 
MIGHTY THYMIO MODEL EVALUATION: NUMBER OF 

SAMPLES FOR THE TWO CLASSES, AREA UNDER THE 

ROC (AUC), AND SUCCESS PROBABILITY FOR SCORES 
ABOVE τ = 0.98, WHICH IS THE THRESHOLD WE USE TO 

COMPUTE THE PLANS ACCORDING TO SECTION IV-B 

 

With a threshold of = 0.98, however, the model 

produces 99.7% accuracy and 96.1% recall, both of 

which are sufficient for use in our map design.  

Planned Movement of ANY Animal We calculate 

and then execute several pathways between 

destination and source locations for the simulated 

Animal, and publish our findings here to provide 

light on our main contribution, which is to use the 

learned local motion model to design a path. To be 

more specific, we take a random sample of 1000 

pairs of source and target states across two maps 

(rough and surf) of size 10m 10m, as shown at the 

top of Fig. 8; we then eliminate any pairs that are 

located outside the green areas (where we anticipate a 

successful spawning of the simulated robot) and any 

pairs with a distance shorter than 3 m. Neither map 

was used to train or assess the model, although both 

were created by hand to seem like actual outside 

terrain (rough) and be easily readable (surf, with a 

smooth, gentle slope). 

On a single, state-of-the-art desktop CPU, a single 

model assessment takes roughly 1 millisecond. Our 

120-second RRT* planning window is fine for a 

granularity of map coverage we've established. Trees 

with = 0.45m have roughly 10,000 edges and need 

100,000 model evaluations. 

 

Figure 7: Three examples of routes from origin to 

destination shown on a crude map, with one 

unsuccessful route shown in partially red and two 

successful routes shown in blue (all blue). For each 

run, we keep track of both the actual results and the 

predicted outcomes. (Yellow). Multiple runs may 

yield different results due to random interactions with 

the landscape. For instance, in 30 attempts along the 

bottom path, 14 attempts failed while 16 succeeded, 

yielding a P(S = 1) of 0.53, which is remarkably 

close to the predicted value yes = 0.57. The failures 

occurred at a rate of 1 in 3 of the 34 segments (e10 : 

7, e11 : 3, e20 : 4). For every desired trajectory, we 

first create the robot at the starting point and then 

feed the controller its series of intermediate goal 

posts, as shown in Fig. 7. 

In around 80% of situations, the robot successfully 

reaches the goal, while in the other 20%; we see a 

failure to finish one segment of the route due to 

timeout or other causes. From every given route, we 

extract all subpaths that begin before a failure (if 

any): each subpath contains well-defined ground 

truth labels and predictions for success and duration, 

greatly expanding the number of (path) samples from 

1 K to roughly 400 K. Success rates for predicting the 

completion of single segments, source-target 

pathways, and all of their sub paths are compared in 

Table I. The area under the curve (AUC) is consistent 

between datasets for both maps. 3 Although it is 

more challenging to make accurate predictions on the 

surf map, the rough map's performance is on par with 

the previously discussed evaluation dataset of single 

segments. In Fig. 8, we see an example of the 

prediction's accuracy when applied to sub paths. The 

model is better calibrated on the rough map than on 

surf, which is smoother but has steeper slopes, and 
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the success score is generally well calibrated, though 

it tends to overestimate the success chance of risky 

paths (i.e., those with low score). While we record 

the time until a single pose is reached during 

training—which may occur before the robot has fully 

stopped—during path execution, the controller waits 

until the robot is still before beginning to move 

towards the next pose, leading us to believe that the 

actual duration of sub paths is consistently 

underestimated. Still, at only about 5%, the 

discrepancy is hardly noticeable. 

 

 

 

 

 

Figure 8: An analysis of two maps' assessment of an 

Animal model on around 400 K sub paths (rough left 

and surf right). In the top row, you can see how the 

landscape might look from above in 3D if a robot 

were the right size for it. Its height map data is shown 

in the second row (in meters) and the spawning 

grounds are shown by the green. The bottom plots 

show the range of error for the binned prediction 

outputs, with the area corresponding to 1 standard 

deviation shown by the dots at the mean. 

 

VI. CONCLUSIONS 
 

To solve the problem of robotic route planning, we 

used a unique, data-driven strategy: first, we learn to 

predict the result of short trajectories from local 

information; subsequently, we utilize this model to 

plan longer trajectories. Filter out unreliable edges as 

you construct a thick random tree to link your source 

and destination states. We used the model to compute 

control trajectories for a real, non-homonymic, 

Mighty Thyme robot moving between obstacles with 

a simple controller and to compute geometrical paths 

on rough terrain for a simulated legged Animal robot 

with a sophisticated controller whose performance 

would be difficult to model by hand. It is worth 

noting that in the second scenario, it would be simple 

to analytically model the robot's collision risk with 

known obstacles; however, it is intriguing that our 

data-driven approach yields acceptable results, using 

a small training dataset and requiring no explicit 

knowledge of the robot geometry. 

Figure 8: An analysis of two maps' assessment of an 

Animal model on around 400 K sub paths (rough left 

and surf right). In the top row, you can see how the 

landscape might look from above in 3D if a robot 

were the right size for it. Its height map data is shown 

in the second row (in meters) and the spawning 

grounds are shown by the green. The bottom plots 

show the range of error for the binned prediction 

outputs, with the area corresponding to 1 standard 

deviation shown by the dots at the mean. 
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