

 ISSN 2454-9940

 www.ijasem.org

 Vol 18, Issue 1, 2024

1027

Enhancing Path Planning Through Local Motion Predictions
Mr. Gangisetty Naveen Kumar

Assistant Professor, Department of CSE,

Malla Reddy College of Engineering for Women., Maisammaguda., Medchal., TS, India

Abstract—

We provide a new strategy for long-range route planning that

makes use of a learnt model to anticipate the results of local

movements with perhaps incomplete information. What the

model is trained with data consisting of unsupervised path

acquisition. This part is used by route planners who rely on

sampling to determine the quality of potential branch additions to

the planning tree. We use two robots—a complicated, simulated

quadruped robot (Animal) traversing tough terrains and a basic,

actual differential-drive robot (Mighty Thyme) traversing

unknown geometry and obstacles—to demonstrate the use of this

pipeline. Finally, we demonstrate that planning yields logical

routes by quantitatively assessing the model's effectiveness in

forecasting the outcome of both local and long-range actions.

I. INTRODUCTION

SAMPLING-BASED PLANNING [1] is an effective

and general route planning technique that frames the

issue as the search for a series of viable local

movements, each of which connects the starting point

with the destination. Two states in close proximity to

one another, with the first local motion beginning at

the source state and the second local motion

culminating at the destination state. A local motion

estimator takes into consideration robot kinematics,

local planners and controllers, and environmental

information to estimate the feasibility of local

movements.

In most cases, the local motion estimator is a

somewhat straightforward component that only

verifies that a direct move between two states does

not result in a collision with any known obstacles and

does not violate any of the robot's kinematic

restrictions. But this method won't work when the

robot's interactions with its surroundings are

complicated and maybe random. Think of a robot

with legs that has to map out a lengthy route through

rough terrain it is familiar with. Another method of

determining whether a local motion is conceivable

involves using precise Follow the robot's virtual

progress as it traverses the simulated landscape.

Given the form of the terrain, the nature of the

interaction between the robot and the terrain, the

capabilities of the robot's sensors and its low-level

controls, and the likelihood that the robot may lose

traction. This having only incomplete information

about the environment (for instance, we can know the

terrain topology but not its softness/friction

characteristics at planning time) and a high

computing cost (a local motion estimator is queried

extremely frequently, and hence has to be quick) are

both problems. The major thing we bring to the table

is a new way of doing things, in which we: develop

an estimator to forecast the result (e.g., success

probability, time, energy,...) of movements joining

two neighboring states, given the available

(potentially imperfect) information about the

surrounding environment;

We identify possible local movements and give them

a cost to be minimized (for example, finding the

route with the least number of turns) using the learnt

estimator inside a sampling-based global planning

framework. with low risk of failure) given that (1) a

local planner and controller are at our disposal, (2)

our understanding of the environment is fixed (in

particular, at planning time, the map covers source

and target locations, and the robot does not acquire

new information during trajectory execution), and (3)

the robot cannot recover from setbacks and therefore

does not require dynamic re-planning. In Section VI,

we will quickly go through various options for easing

these constraints. When training an estimator, it is

helpful to gather examples in the form of input-

output pairs, where the input is a set of neighbouring

states and any accessible information about the

surrounding environment and the output is the result

of the action taken. These measurements may be

taken either virtually or in the actual world, with the

robot performing various man oeuvres in the target

area or recording the results. The method may be

done in a self-supervised [2] form if the robot can

feel the result independently (for instance, by using

visual odometer to monitor progress). May gradually

adjust the estimator to fit new conditions this method

works well for scenarios where the robot's actions

will not always have the same result, known as a

stochastic scenario. In particular, employing

probabilistic machine learning [3] methods ensures

that uncertainty in the estimator inputs is correctly

transferred to uncertainty in the outputs, which is

then dealt with in a systematic manner during

planning.

II. RELATED WORK

A. Path Planning

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 18, Issue 1, 2024

1028

Imitation learning from the paths of experts is a

typical approach of incorporating machine learning

into robotic route planning [4]. According to this line

of inquiry, Pfeiffer et al. [5] teach a Given current

readings from a laser scanner, a convolutional neural

network (CNN) may calculate steering instructions to

approach the desired target position; Ollas et al. [6]

evaluate expert trajectories to learn properties of

travelled map regions, and then compute cost maps in

a Bayesian framework; Bagel et al. To get the ideal

cost function for the expert trajectories, [7] use

inverse optimal planning. In contrast, we use a

sampling-based approach to graph search in our

study. In order to deal with high-dimensional

configuration spaces, sampling-based motion

planning algorithms [1] depend on a local planner (or

steering function) to establish the connection between

nodes of a graph, allowing for control-space

searching to account for dynamical or differential

constraints. After a target state has been identified,

the Rapidly Exploring Random Trees (RRT) [8]

method builds a tree by sampling the configuration

space to add edges that lead to viable states. Connects

two nodes in a tree, the route between them is

returned. A different approach is provided by the

Probabilistic Road Maps (PRM) [9] programmed,

which constructs a network of possible edges within

which the optimal route may be determined using

methods such as Dijkstra's algorithm. When given

enough time to develop the graph, sampling-based

planners are able to determine a route from source to

destination with probability 1. Asymptotically,

optimal versions like RRT* and PRM* converge to

the route with the lowest cost [10]. Components of

sampling-based planners have been enhanced using

machine learning, for example, to automatically

choose the appropriate sampler [11] or the optimum

expansion strategy depending on the neighborhood of

a node [12]. Here, we apply machine learning to a

different part of the system—namely, the part that

establishes the link between two neighboring states.

B. Search Spaces

Pathways that may be taken, or viable paths, are

discovered by the use of certain planning procedures,

which may, for instance, search for paths that avoid

collisions or investigate the space of all possible

states. To maintain a steady walk [13]. In contrast,

action space is what planners look for when

determining what to do next. Previously, we assessed

the practicability of movements on a horizontal grid

[14]. Instead, we randomly choose data from a much

wider pool in our study.

C. Local Motion Estimation

One important part of global route planning

algorithms is estimating the practicability of local

movements. Cells in 2D maps, for instance, may be

given reversibility scores that are useful for guiding

legged robots. to take into consideration the robot's

shape and the roughness and slope of the ground

[15]; in a more involved technique, Fankhauser et al.

[13] first calculate secure footholds, and then body

and leg trajectories to traverse steep parts and high

steps. When the robot's interaction with its

surroundings is intricate, one may train a model to

provide reversibility scores:

Before using a convolutional neural network (CNN)

to calculate the confidence of retaining balance on

prospective footholds, Wellhausen et al. [16] utilize a

weakly-supervised technique to segregate terrain

classes from a front-facing camera picture. Methods

with similar goals have been developed, for instance

in the LAGR project [17], which include the

classification of terrain before assigning a cost to a

grid map. Given a local planner, our proposed

method first trains an estimator to predict which local

motions are feasible through a large number of

random trials on a variety of terrains; then, instead of

constructing a fixed resolution grid map, it samples

from the entire space of local motions to construct a

dense planning tree. Moreover, it doesn't depend on

carefully crafted models of the landscape to function,

but rather it learns broad characteristics by seeing

how they're used in context across different types of

terrain. Terrains. Chiang et al. [18] suggest a similar

method in their recent work for kin dynamically

restricted robots, whereby a local planner taught with

reinforcement learning is integrated into a global

sampling-based planner. In imitation learning, the

expert trajectories for a legged robot come from a

complex high-dimensional footholds planner [7]

rather than a human pilot, using the same basic

concept of employing machine learning to imitate the

outputs of a computationally costly planner.

III. MODEL

With the use of machine learning, we analyze the

costs and viability of potential global route plans (see

below). Fig. 2). Regional Activity (A.) The robot

operates through a world about which it has only

partial information K modeled at planning time.

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 18, Issue 1, 2024

1029

Figure 2: Definitions discussed in Chapter 3: To

determine the likelihood of success and cost of

candidate edges for a tree, a sampling-based planner

(c) queries a model (b) trained using a dataset (a) of

local motion outcomes. Establishing a link between s

and t as sources and destinations. The model's

utilization of expert knowledge, shown by the orange

circle, is illustrated. Information. Two neighboring

states in the robot's configuration space C create a

local motion denoted by the equation e = (q1, q2) C2.

Local motion might be represented as a pair of poses

in the two-dimensional special Euclidean group SE

(2), and knowledge as an obstacle occupancy grid,

for a differential-drive wheeled robot navigating a

plane with obstacles. Using its local planner and its

controller, the robot moves along the time-

parameterized trajectory: [0, T] C, where (0) = q1. As

a rule, a number of Different trajectories can result

from the same local motion being executed due to a

number of factors, including: local planners that use

random algorithms; incomplete knowledge of the

environment (possibly based on the robot's sensors);

stochastic interaction with the environment while

executing the motion (such as when a robot slips, for

example). We thus assume that is taken at random

from a distribution that takes into account both the

external conditions (environment, e) and the local

information (). Key K, where K is the subset

containing any information about he’s surroundings;

in the aforementioned example, local knowledge

would be the piece of the occupancy grid map that

includes the source and target postures.

B. Acquiring the Ability to Forecast Neighborhood

Paths Through the application of supervised machine

learning, we are able to foretell the result of a certain

local motion (i.e., the predicted value of the trajectory

descriptors). To be more specific, we are taught the

mapping (e,Ke) y = E[d(e,Ke)] (see Fig. 2(b)). To

train a machine learning model, we first amass a

large dataset consisting of examples of local

trajectories by randomly choosing local movements

across contexts and noting the values of their

descriptors d().

1) Dataset Collection: If the robot directly extracts

the trajectory descriptors from on-board sensors, it

may gather the dataset (shown in Fig. 2(a)) in an

unsupervised fashion. The first algorithm is a random

walk through trees (RRT) based planner that uses a

model to forecast the predicted descriptors y of local

motion trajectories and information K about the

environment to calculate a route from s C to t C.

When adding a cost function C to the tree, only edges

with a success probability greater than are considered

for inclusion.

That of its interior. We choose a local coordinate

frame, centered on q1, since the only information

necessary for relevant descriptors is the relative

location of q2 with regard to q1, and the local

knowledge surrounding q1. Place q1 to stand in for

q2 and Key. In the end, the dataset includes several

examples of the type (Kq2, q2, d1, d2, . . . , dn). The

Second Part Is Studying: The model produces a

variety of results, some of which are used for

classification and others for regression, since some of

the descriptors are discrete (such as S) while others

are continuous (such as time and energy). In Fig. 5,

we depict the structure of the deep neural network we

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 18, Issue 1, 2024

1030

use as a local motion estimator for two distinct

planning issues. Path Planning on a Global Scale The

global route planner seeks the optimal path for the

robot to take from s C to t C, represented as a series

of local movements = (e1, e2,. Using the trained

model's calculated descriptors, we may differentiate

between trajectories. More specifically, we

characterize the path's incremental cost as

Where the price of the nearby movements is based on

the descriptions that have been projected. If we

assume, for the sake of argument, that the odds of

Due to the fact that the robot's local movements may

be completed independently of one another,

minimizing the route survival risk R can be a

challenging but rewarding task.

Using a sampling-based planner that repeatedly

constructs a network of states linked by edges

representing possible local states; we are able to

solve the global planning issue. Movements (like

local motions that have a good chance of

succeeding). Our system utilizes permutations of the

Rapid Exploring (Dense) Tree (RDT) [19] method

for answering single-use route planning questions.

Typically, these algorithms will sample points from

the configuration space and iteratively build a treat C

that spans the space (with a bias towards t) and

FIGURE 3: Animal pipeline (a) by selecting q1

evenly on a map and q2 in an annulus surrounding it,

we gather around 90 K random trajectories. In order

to utilize RRT* to calculate plans (c), we first use

these trajectories to train a model (b). Knowledge of

the immediate area around the robot, denoted by the

coordinates (q1,q2), is stored in a 2m 2m grid patch

P. Height maps are shown in grayscale, while the

orange line represents the terrain's elevation. All

illustrations are drawn to scale and based on actual

scientific research.

As shown in Figure 2(c) and Algorithm 1, the

predictions play a crucial role in the planning

process, and are used to connect the nodes to the tree

via local motions. We cannot evaluate infinitesimally

short local motions (otherwise their descriptors

would be meaningless), which is the main difference

with the original RDT algorithms like RRT, and thus

the asymptotic properties are not preserved. RRT*

[10] and SST [20] (Stable Sparse RRT) are two ideal

variations that employ a cost C (here estimated from

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 18, Issue 1, 2024

1031

the expected descriptors) to create a tree of optimal

pathways by connecting them with edges. To the tree

may necessitate branch competition or local

reorganization (RRT*) (SST).

IV. CONDITIONS FOR THE TESTS

Here we provide two examples of how the model

described in Section III may be put to use, one for the

simulated Animal robot shown in Fig. 1, and the

other for a real-world version of the Mighty Thyme

robot. The two robots navigate a 2D landscape

represented as height maps (i.e., grayscale pictures

with altitude values associated with each pixel),

while we disregard non-geometric properties (like the

surface material). The robot relies on local height

maps, which are square patches of height map data

centered on the robot's position and aligned with its

orientation, to guide its moves in the immediate

vicinity. Using the Open Motion Planning Library

(OMPL) [21], we deploy a sampling-based planner.

A. Simulated Animal \s1) Robot and Environment:

Animal [22] is a state-of-the art\quadruped robot

developed at ETHZ for autonomous operation in

challenging environments, with the ability to walk on

\sough terrain. Gazebo (see Fig. 1(a)) is used to

model Animal and its 80 cm 60 cm 70 cm footprint

so that we can assess the robot's ability to navigate

around various obstacles (such as steps, holes, slopes,

and bumps) and design routes that avoid them. For

the sake of clarity, we restrict our analysis to

orientation-preserving local motions, so that the

horizontal position of Animal’s centre defines the

configuration space C = R2. Local knowledge is

represented as a 100 PX 100 PX (2m 2m) patch P of

such height map, with a resolution of 2 cm per pixel

(see Fig. 3(a)).

To compensate for the unpredictability of the

environment, the simulated Animal uses a simple, 1

locomotion planner and a complex closed-loop

feedback controller [23]. The only piece of

information that is fed into the local planner is the

relative target pose, which is represented by the

equation q2 = (x, y,). For any sampled trajectory γ,

\sd(γ) ∈ {0, 1} × R+ is composed of success S (“has

the robot \arrived near enough to q2?”) and duration

Three, we gather a dataset of about 90 K samples

(76% with S = 1), where each sample is a tuple (P, x,

y, S, T), by randomly spawning the robot on stable

poses. It takes the robot on average 8 steps (about 10

seconds) to complete a local motion (Fig. 3(a)), and it

can achieve this by randomly sampling a relative

target point at a distance between 15 cm and 50 cm

along a random direction. We collect information

from 12 unique environments (1,200 square meters in

total) that feature difficult obstacles like slopes,

bumps, holes, rails, and steps. Height maps of the

landscape are generated procedurally using a

superposition of simplex noise at varying scales, as

we did previously in our work [14].

A deep neural network is trained to predict the

success and duration of local motions, as shown in

Fig. 4. An estimator consists of two phases:

Convolutional layers make up the first type. That

function on the height map patch (which is 2D and

structured like an image); the second stage processes

the resulting features and takes the relative target

point as an input (x, y). The model's output is a dense

layer with softmax activation, which calculates a

success probability yes and an estimated duration yet.

Categorical cross-entropy (success) plus mean

squared error gives the loss function (duration). All

12 of the dataset's landscapes are unique: the training

set has 70K samples from 7 landscapes, the

validation set has 10K samples from 2 landscapes,

and the evaluation set has 8.7K samples from 3

landscapes. Algorithm 1 is derived from RRT*, and

so is Algorithm 5's planner, which uses the trained

local motion model to compute global paths.

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 18, Issue 1, 2024

1032

Powerful Thyme pipeline, as shown in Fig. We use

SST to plan safe trajectories (= 0.98) that minimize

duration by (a) randomly changing the robot's angular

speed every 2 s in order to collect 1 s training

samples labeled according to the occurrence (or not,

S 0, 1) of a collision, and (b) using this model to

predict the probability of a collision in the next 1 s

for given angular and linear speeds. Extensive

familiarity with the area the grid patch P (orange

stroke) measures 50 cm on all sides and centers on

the robot (q1, q2). Anything that involves drawing is

to scale and rely on empirical evidence. Please RRT

in III.C1. In particular, the planner repeatedly picks a

new random starting point q and makes moves to try

to make the tree bigger. From q's nearest neighbor

along a 45-centimeter-long segment in the direction

of q. Candidates are kept if q as long as the distance

is greater than 15 cm; otherwise, they are eliminated.

Each edge is given a risk of log yes based on the

estimator's success score yS, and edges with scores

below a threshold of = 0.5 are deemed impossible to

construct. Since RRT* is an anytime algorithm that

converges towards the optimal solution, we let the

tree grow within a given computational time budget

in order to find the path with the minimum survival

risk, as defined by Eq. (1).

Thyme, the Powerful The Robot and Its

Surroundings, Part 1 An improvement upon the

original small educational robot Thyme [25], the

Mighty Thyme [24] is designed for scientific study.

The robot's position and orientation make up its

configuration space, denoted by the notation C = SE

(2), and are transmitted to its two differentially driven

wheels. Figure 1(b) shows a small mobile robot

navigating a room with a flat floor and a number of

obstacles on it; to make the planning problem more

interesting; we have given the robot an extra rigid

arm on its right side.

Dimensions for the whole Mighty Thyme are 11 by

11 by 20 centimeters, while the arm is 10 by 2 by 0.5

centimeters. The purpose of this study is to put the

model presented in Chapter III to use in a different

setting: the pursuit of knowledge. To foresee whether

or not the robot (whose geometry is presumed to be

unknown) will clash with obstacles during a brief

motion, and to utilize this knowledge to design

courses that avoid collisions. Local knowledge is

represented as robot-centered 80 PX 80 PX (50 cm

50 cm) patches, while environs are represented as

height maps with a resolution of 0.625 cm per pixel.

Second, nearby motion: In the same way as Animal

can conduct arbitrary local movements in free space

with the use of a pretty complicated

planner/controller combo, the Mighty Thyme can do

the same. Instead, we give a simplified model that

exemplifies the universality of our method by

restricting local movements to constant linear and

angular velocities of v = 8 cms1, 8 cms1 respectively.

The Animal Neural Network design, as described in

Section IV-A is shown in Figure 5.

The model calculates a probability of attaining the

target posture and an estimate of the robot's pose

from the given robot-centered height map patch P

and the relative target goal (x, y). Time necessary.

The architecture of Mighty Thyme is fairly similar to

that of the previous game (see Section IV-B). The

Third Step Is to Gather the Datasets: We collect

information using a controller that chooses an angular

velocity at random every two seconds. After every

collision, the robot remembers the details and

reverses its direction of travel (going backward if it

was going ahead and vice versa). There is a motion

capture system that keeps track of where the robot

and the obstacles are at all times. We operate the

robot for 120 minutes over six maps, recording

around 460 collisions. After the data is acquired, it is

processed to extract 1 second trajectories with

constant controls, with S = 1 for trajectories that do

not include collisions and S = 0 for those that do (see

Fig. 4(a)). We amass a collection of 104 K samples in

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 18, Issue 1, 2024

1033

the format (P, v, S). Four) we use the CNN

architecture shown in Fig. 5 for our training, with the

exception that our output is limited to the success

probability (no-collision) of the motion. The dataset

is created by us. 52k samples were utilized for

training (3 maps), 20k for validating (1 map), and

30k for judging (all from separate sets of maps) (2

maps). Tracking Your Steps: We use a modification

of SST that samples control inputs to attain a local

target point in order to account for the differential

restrictions of the robot's movements. To be more

specific, the planner adds an edge to the tree only if it

reduces the local cost-to-come, and SST repeatedly

chooses a random posture q SE(2) and multiple

control inputs, picking the one that would bring the

robot closer to q from its nearest neighbor. Feasible

edges are assigned a constant cost of 1, which is

proportionate to their duration, and edges with a

chance of success below = 0.98 are discarded. SST is

a nearly optimum solution converge at any time,

therefore we let the tree grow for a predetermined

period of computing time.

V. EXPERIMENTAL RESULTS

How accurate are our predictions of the results of

local motions?

How helpful are the neighborhood models in

determining where to go? Do our presumptions from

Section III make sense? And in particular are were

we correct to take yes as the chance of success for

individual actions and then use it to determine the

likelihood of success for a complete trajectory? To

begin answering these problems, we now offer

experimental data for the two configurations

described in Section IV.

The predictions made by the learnt model are

consistent with the map, as shown by qualitative

testing shown in Figs. 3(b) and 4(b): the Animal

model accurately estimates that movements that step

over the short wall are dangerous, and the Mighty

Thymiomodel appropriately predicts collisions.

Similarly, Figs. 3(c) and 4(c) illustrate that the

planner computes logical courses between manually

selected sites on interesting maps: Animal avoids

steep stairs and slopes, while Mighty Thyme (with an

arm on the right) remains on the left side of a corridor

to prevent collisions. Several examples of planned

pathways and their actual implementations may be

seen in the film included in the appendices. A.

Predicting Motion Close to Its Origin 1) Animal: The

degree to which the Animal model's predictions

match the test's real values is shown in Fig. 6: left.

Data set; the associated performance ratings are

shown in the grey assessment columns of Table I

(AUC = 0.889) for evaluating single local

movements. Both of the model's predictions are

highly accurate. Table II and Fig. 6: right show the

findings of the Mighty Thyme model predicting

success probability (AUC = 0.972), which are similar

to those found in the previous section. Inadequate

calibration (in comparison to the Animal model) of a

model that tends to overstate the success probability

may be attributable to the low number of collisions

experienced by the robot during data collection (one

unsuccessful sample for every 25 successful

samples).

Fig. 6: Animal (8700 samples, left and centre) and

Mighty Thyme (30 K samples, right) local motion

model assessment (ground truth vs. prediction). The

yes values in the success plots are divided up into

0.1-point bins. Throughout the time frame figure,

where the dots represent the mean value of T for

outputs yT clustered in 1 s width bins and the grey

area is bounded by 1 standard deviation. Black

dashed lines depict flawless models.

PREDICTION OF SUCCESS USING AN ANIMAL MODEL

TABLE I NUMBER OF SAMPLES FOR THE TWO CLASSES

AREA UNDER THE ROC (AUC). IN THE COLUMNS ARE
THE RESULTS FOR INDIVIDUAL LOCAL MOTIONS e (IN

GRAY), PATHS BETWEEN DISCRETE ORIGIN AND

DESTINATION POINTS ON CHOSEN MAP LAYOUTS (IN
WHITE), AND ALL SUBPATHS sub EXTRACTED FROM

SUCH PATHS (BLUE)

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 18, Issue 1, 2024

1034

TABLE II
MIGHTY THYMIO MODEL EVALUATION: NUMBER OF

SAMPLES FOR THE TWO CLASSES, AREA UNDER THE

ROC (AUC), AND SUCCESS PROBABILITY FOR SCORES
ABOVE τ = 0.98, WHICH IS THE THRESHOLD WE USE TO

COMPUTE THE PLANS ACCORDING TO SECTION IV-B

With a threshold of = 0.98, however, the model

produces 99.7% accuracy and 96.1% recall, both of

which are sufficient for use in our map design.

Planned Movement of ANY Animal We calculate

and then execute several pathways between

destination and source locations for the simulated

Animal, and publish our findings here to provide

light on our main contribution, which is to use the

learned local motion model to design a path. To be

more specific, we take a random sample of 1000

pairs of source and target states across two maps

(rough and surf) of size 10m 10m, as shown at the

top of Fig. 8; we then eliminate any pairs that are

located outside the green areas (where we anticipate a

successful spawning of the simulated robot) and any

pairs with a distance shorter than 3 m. Neither map

was used to train or assess the model, although both

were created by hand to seem like actual outside

terrain (rough) and be easily readable (surf, with a

smooth, gentle slope).

On a single, state-of-the-art desktop CPU, a single

model assessment takes roughly 1 millisecond. Our

120-second RRT* planning window is fine for a

granularity of map coverage we've established. Trees

with = 0.45m have roughly 10,000 edges and need

100,000 model evaluations.

Figure 7: Three examples of routes from origin to

destination shown on a crude map, with one

unsuccessful route shown in partially red and two

successful routes shown in blue (all blue). For each

run, we keep track of both the actual results and the

predicted outcomes. (Yellow). Multiple runs may

yield different results due to random interactions with

the landscape. For instance, in 30 attempts along the

bottom path, 14 attempts failed while 16 succeeded,

yielding a P(S = 1) of 0.53, which is remarkably

close to the predicted value yes = 0.57. The failures

occurred at a rate of 1 in 3 of the 34 segments (e10 :

7, e11 : 3, e20 : 4). For every desired trajectory, we

first create the robot at the starting point and then

feed the controller its series of intermediate goal

posts, as shown in Fig. 7.

In around 80% of situations, the robot successfully

reaches the goal, while in the other 20%; we see a

failure to finish one segment of the route due to

timeout or other causes. From every given route, we

extract all subpaths that begin before a failure (if

any): each subpath contains well-defined ground

truth labels and predictions for success and duration,

greatly expanding the number of (path) samples from

1 K to roughly 400 K. Success rates for predicting the

completion of single segments, source-target

pathways, and all of their sub paths are compared in

Table I. The area under the curve (AUC) is consistent

between datasets for both maps. 3 Although it is

more challenging to make accurate predictions on the

surf map, the rough map's performance is on par with

the previously discussed evaluation dataset of single

segments. In Fig. 8, we see an example of the

prediction's accuracy when applied to sub paths. The

model is better calibrated on the rough map than on

surf, which is smoother but has steeper slopes, and

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 18, Issue 1, 2024

1035

the success score is generally well calibrated, though

it tends to overestimate the success chance of risky

paths (i.e., those with low score). While we record

the time until a single pose is reached during

training—which may occur before the robot has fully

stopped—during path execution, the controller waits

until the robot is still before beginning to move

towards the next pose, leading us to believe that the

actual duration of sub paths is consistently

underestimated. Still, at only about 5%, the

discrepancy is hardly noticeable.

Figure 8: An analysis of two maps' assessment of an

Animal model on around 400 K sub paths (rough left

and surf right). In the top row, you can see how the

landscape might look from above in 3D if a robot

were the right size for it. Its height map data is shown

in the second row (in meters) and the spawning

grounds are shown by the green. The bottom plots

show the range of error for the binned prediction

outputs, with the area corresponding to 1 standard

deviation shown by the dots at the mean.

VI. CONCLUSIONS

To solve the problem of robotic route planning, we

used a unique, data-driven strategy: first, we learn to

predict the result of short trajectories from local

information; subsequently, we utilize this model to

plan longer trajectories. Filter out unreliable edges as

you construct a thick random tree to link your source

and destination states. We used the model to compute

control trajectories for a real, non-homonymic,

Mighty Thyme robot moving between obstacles with

a simple controller and to compute geometrical paths

on rough terrain for a simulated legged Animal robot

with a sophisticated controller whose performance

would be difficult to model by hand. It is worth

noting that in the second scenario, it would be simple

to analytically model the robot's collision risk with

known obstacles; however, it is intriguing that our

data-driven approach yields acceptable results, using

a small training dataset and requiring no explicit

knowledge of the robot geometry.

Figure 8: An analysis of two maps' assessment of an

Animal model on around 400 K sub paths (rough left

and surf right). In the top row, you can see how the

landscape might look from above in 3D if a robot

were the right size for it. Its height map data is shown

in the second row (in meters) and the spawning

grounds are shown by the green. The bottom plots

show the range of error for the binned prediction

outputs, with the area corresponding to 1 standard

deviation shown by the dots at the mean.

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 18, Issue 1, 2024

1036

REFERENCES

[1] M. Elbanhawi and M. Simic, “Sampling-based

robot motion planning: A review,” IEEE Access, vol.

2, pp. 56–77, 2014.

[2] C. Doers, A. Gupta, and A. A. Eros,

“Unsupervised visual representation learning by

context prediction,” in Proc. IEEE Int. Conf.

Compute. Vision, 2015, pp. 1422–1430.

[3] Z. Ghahramani, “Probabilistic machine learning

and artificial intelligence,” Nature, vol. 521, pp.

452–459, 2015.

[4] D. González, J. Perez, V. Milanese, and F.

Nashashibi, “A review of motion planning techniques

for automated vehicles,” IEEE Trans. Intell. Transp.

Syst., vol. 17, no. 4, pp. 1135–1145, Apr. 2016.

[5] M. Pfeiffer, M. Schaeuble, J. Nieto, R. Siegwart,

and C. Cadena, “From perception to decision: A

data-driven approach to end-to-end motion planning

for autonomous ground robots,” in Proc. IEEE Int.

Conf. Robot. Auto., 2017, pp. 1527–1533.

[6] M.Ollis, W.H.Huang, andM.Happold, “A

bayesian approach to imitation learning for robot

navigation,” in Proc. IEEE/RSJ Int. Conf. Intell.

Robots Syst., 2007, pp. 709–714.

[7] J. Bagnell, J. Chestnutt, D. M. Bradley, and N. D.

Ratliff, “Boosting structured prediction for imitation

learning,” in Proc. Adv. Neural Inf. Process. Syst.,

2007, pp. 1153–1160.

[8] S. M. Lavelle, “Rapidly-exploring random trees:

A new tool for path planning,” Iowa State University,

Tech. Rep., 1998.

[9] L. E.Kavraki, P. Švestka, J.-C. Lacombe,

andM.H.Overmars, “Probabilistic roadmaps for path

planning in high-dimensional configuration spaces,”

IEEE Trans. Robot. Auto., vol. 12, no. 4, pp. 566–

580, Aug. 1996.

[10] S. Karaman and E. Frazzoli, “Sampling-based

algorithms for optimal motion plan,” Int. J. Robot.

Res., vol. 30, no. 7, pp. 846–894, 2011.

[11] A. Upadhyay and C. Ekenna, “Investigating

heterogeneous planning spaces,” in Proc. IEEE Int.

Conf. Simul., Model. Program. Auton. Robots, 2018,

pp. 108–115.

[12] J. Denny, M. Morales, S. Rodriguez, and N. M.

Amato, “Adapting rrt growth for heterogeneous

environments,” in Proc. IEEE/RSJ Int. Conf. Intell.

Robots Syst., 2013, pp. 1772–1778.

http://www.ijasem.org/

