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Abstract 

In this research, we utilize simulations to construct a guess 

about how many times Latin Hypercube sampling will need to 

be run in order to cover a t-dimensional subspace of a d-

dimensional parameter space of size n. The formula looks like 

this: P(k, n, d, t)=1 ek/nt1. We propose that this coverage 

formula holds true regardless of d, and use this to draw 

parallels between the two processes (population modelling and 

experimentation). We further demonstrate that, at the sub-

block size level, Orthogonal sampling provides more consistent 

coverage of the t-dimensional subspace than Latin Hypercube 

sampling. Particularly applicable to efforts at uncertainty 

quantification and sensitivity studies, these concepts are worth 

considering.  

Key words :  

Model Population, Latin Hypercube Sampling, and 

Orthogonal Sampling are some relevant terms to keep in mind. 

Introduction  

In mathematics, it is common practice to specify 

model parameters to multiple significant digits. The 

intrinsic variability in the underlying dynamical 

processes is sometimes lost when these parameters 

are fitted to a collection of mean 

observational/experimental data. The idea of a 

population of models (POMs) [10] is a relatively 

new method for capturing this important and 

intrinsic variability, and it involves the construction 

of a mathematical model with multiple points in 

parameter space rather than a single point, all of 

which are chosen to fit a given set of 

experimental/observational data. Following its first 

proposal in the field of neuroscience modelling, the 

POM method has found application in the field of 

cardiac electrophysiology [1, 15]. In this context, 

models are calibrated by extracting biomarkers 

from time course profiles, such as Action Potential 

Duration and beat-to-beat variability. To ensure 

variability estimates are within biological ranges 

for any model, the ranges of extremes for each 

biomarker seen in the experimental data are 

employed. If the data cannot be characterized by a 

collection of biomarkers, then time course profiles 

may be used to calibrate the population by 

comparing the data values to the simulation values 

at a series of time intervals using a normalized 

root-mean-square (NRMS) comparison. This 

method may point to a fresh way of doing scientific 

research. To begin, the approaches arrived at using 

the POM methodology are fundamentally 

probabilistic. Second, it prioritizes the feedback 

paradigm based on testing, modelling, and 

simulation [5].  

Variability in the underlying structure may be 

represented by permitting changes in the parameter 

values via the use of experiments based on a 

population of models, as opposed to experiments 

based on a single model. Decisions on whether to 

employ "best" or "mean" data, as well as the 

challenges associated with selecting such data, are 

sidestepped by this method. A large number of 

sample parameter sets, drawn from a potentially 

high-dimensional parameter space, must be 

generated before a model population can be 

constructed. Recent developments in processing 

capacity have made it feasible to build vast 

numbers of such models, which in turn leads to a 

deeper understanding of the systems under study. 

There are a variety of approaches of sampling the 

parameter space, each of which is bound by 

different budgetary and computational 

considerations. When the number of samples is 

fixed and independent of the dimension of the 

space, random sampling, Latin Hypercube 

sampling (LHS), and Orthogonal sampling (OS) 

will give increasingly improved coverage of the 

parameter space compared to a parameter sweep. 

POMs may be built in a variety of methods, each 

tailored to the underlying use case. POMs are 

created from LHS, for instance in [1], [15], which 

is helpful since it elucidates the source of 

variability in cardiac electrophysiology. In this 

scenario, unlike when POMs are used for parameter 

fitting, it is less of a concern whether or not all of 

the parameter space is covered. Similarities 

between POMs and ABC [7] may be seen in this 

context. As opposed to randomly sampling the 
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parameter space, ABC often performs adaptive 

sampling to converge on subregions of parameter 

space where the calibrated models sit. So, in certain 

cases, knowing how much of the parameter space k 

d-dimensional Latin Hypercube trials should cover 

is crucial. 

 The authors of article [4] set out to 

determine how well a 2-dimensional 

parameter zone for k LH trials where each trial is n-

in-size. In specifically, the estimated coverage of 

points in the parameter space after k trials was 

predicted using counting arguments. Numerical 

results from 100 simulations implemented in 

MATLAB were compared to these estimations. 

Based on the simulation findings, the authors 

hypothesized that with k trials, the probability of 

covering the whole 2-dimensional parameter space 

for values 1, 2, n was around 1 ek/n. One benefit of 

LHS is that it stratifies all univariate means 

concurrently, as stated by McKay, Beckman, and 

Conover [12]. Stratifying the bivariate margins is 

another something that has been recommended, 

most notably by Tang [14]. In an experiment, for 

instance, many factors may be considered, but 

usually just a few of them make a significant 

difference. To address this issue, one strategy 

involves mapping the components into a subspace 

occupied by the effective variables. However, this 

may cause the sample points to be duplicated in the 

effective subspace. As Tang points out, even in the 

case of bivariate margins, there is no assurance that 

this projection is uniformly distributed, despite the 

fact that Welch et al. [16] propose LHS as a way 

for screening for effective variables. 

 Instead, Tang [14] presents a method predicated on 

the presence of orthogonal arrays, which is a kind 

of orthogonal sampling. Further, he demonstrates 

that there is a method of reducing variation by 

using Orthogonal sampling, which leads to 

homogeneity on narrow dimensional margins. Tang 

proposes replacing the elements of an orthogonal 

array (specified in Section 2) with permutations at 

random to get an orthogonal sample. In Section 2, 

we'll provide further context for this approach 

while also outlining an alternative to Orthogonal 

sampling. The generation of interaction test suites 

for the testing of component-based systems has 

also made use of orthogonal arrays and covering 

arrays. For big systems, thorough testing may not 

be practical, thus special suites are created to check 

for t-way interactions (where t may range from two 

to six); for more information, see [3], [9]. For the 

purpose of verifying t > 2 interactions, Bryce and 

Colbourn provide a density-based greedy approach 

for generating covering arrays in [2] and [3]. We 

have looked at the connection between 

Experimental Design and POM construction based 

on our own work and that of [5]. 

Methodology:  

building orthogonal sample sets We first formalize 

the definitions for Orthogonal samples and discuss 

the well-known techniques used to build Latin 

Hypercube samples before moving on to actual 

structures. To create a Latin Hypercube trial, a nd 

matrix is generated, with each column being a 

different random permutation of [1, 2, n], and each 

row being a dtuple. Therefore, given an experiment 

with d variables, where each parameter value can 

be one of 1, 2, n, a Latin Hypercube trial is a 

randomly generated subset of n points from a d-

dimensional parameter space satisfying the 

condition that the projections onto each of the 1-

dimensional subspaces are permutations. Below are 

two examples of Latin Hypercube trials with the 

parameters d = 3 and n = 8. 

 

Analytical Simulation  

In [4], we utilized MATLAB simulations to 

hypothesize that, for a given n, the number of trials 

of a Latin Hypercube of size k is proportional to the 

number of parameters in the system, with d = 2. 

Here we examine the subspace coverage for t = 2, t 

= 3, and t = 4 in the parameter space of d = 3, 4, 

and 5 dimensions. In Fig. (3), we provide the LHS 

outcomes for d = 3, for both 2-tuples and 3-tuples, 

at 25%, 50%, 75%, and 100% coverage. Figure (2) 

displays the LHS outcomes for d = 4, whereas 

Figure (3) displays the outcomes for d = 5. The 

graphs show the log10 of the data, which has been 

averaged across 200 iterations for each quantity. 

The number of trials needed to achieve a target 

percentage of coverage is consistent across systems 

of varying dimensions d, as shown in the 2-

dimensional subspaces (t = 2) for d = 3, 4, and 5. 

For all values of d = 3, 4, and 5, the gradient is 1 at 

25%, 50%, and 75% coverage, and about 1.25 at 

100% coverage. Similar behaviour is seen for 3-
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dimensional subspaces (t = 3) for d = 3, 4, and 5, 

with the exception that the gradient is 2 for partial 

coverage and around 2.3 for total coverage. 

Coverage as a function of trial number (k) and 

division size (n) was proposed to be 1 ek/n in [4]. 

Here, we have findings for t = d = 3 and t = d = 4, 

which seem to indicate that the % coverage at t = d 

is provided by 

 

Figure 1: Coverage for 2-tuples (left) and 3-tuples 

(right), for LHS, d = 3 

 

Figure 2: Coverage for 2-tuples (left) and 3-tuples 

(right), for LHS, d = 4 

 

and, in the asymptotic limit as k becomes large, 

that it is given by 

 

More generally we conjecture for any t 

 

and, in the asymptotic limit as k becomes large, 

that 

 

Figure 3: Coverage for 2-tuples (left) and 3-tuples 

(right), for LHS, d = 5 

 

Figure 4: Coverage for 4-tuples for LHS, for d = 4 

(left) and d = 5 (right) 

 

This is consistent with the 25%, 50%, 75% 

coverage in which the gradient of the log data is t − 

1. The only question to address is why the gradient 

is slightly larger than t − 1 for 100% coverage. To 

see this we see that 100% coverage implies P(k, n, 

d, t) > 1 − 1/nt−1. Thus, under our conjecture 

 

Using the fact that log(1 − p) ≈ −p for p small, then 

this implies 

 

it is this latter term that gives an apparent gradient 

slightly larger than t − 1. Thus, we make the 

following conjecture Conjecture: The coverage of a 

t dimensional subspace of a d dimensional 
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parameter space of size n when performing k trials 

of Latin Hypercube sampling is given by P (kn,d,t) 

=1-  (1- 1/nt-1) . 

   when k is large. 

thus, if costs and/or experimental factors influence 

the size of the sample, we can use this information 

to direct our experiments. So, this builds 

confidence in the modelling results. For LHS, 

where d = 3 and n = 27, we investigate the 

variability (see Fig (5)) in coverage of the sub-

blocks of the 2-dimensional spaces, and compare 

this with Orthogonal sampling where by design the 

coverage is uniform over the sub-blocks. 

Conclusions 

 In this paper we have used simulations to give a 

conjecture about the coverage of a t dimensional 

subspace of a d dimensional parameter space of 

size n when performing k trials of Latin Hypercube 

sampling. This coverage takes the form P(k, n, d, 

t)=1 − (1 − 1/nt−1)k or 1 − e−k/nt−1 when k is 

large. This extends the work in [4]. We suggest that 

the coverage is independent of d and this allows us 

to make connections between building Populations 

of Models and Experimental Designs. We also 

show that Orthogonal sampling is superior to Latin 

Hypercube sampling in terms of giving a more 

uniform coverage of the t dimensional subspace at 

the sub-block size level when only attempting 

partial coverage of this subspace. We will attempt 

to prove our conjecture analytically in a subsequent 

paper. Finally, we note that the results described 

here have direct relevance to uncertainty 

quantification and sensitivity analyses in terms of 

the sampling techniques ([6]). 

Figure 5: Sub-block coverage in each of the 2-

dimensional subspaces for LHS with d=3, n=27, for 

trials giving 25% and 75% coverage. 
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